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Abstract

Motivated by the need for more flexible decision-making mechanisms in the European Unio
paper proposes a simple but novel voting scheme for binary decisions taken by committees th
regularly over time. At each meeting, committee members are allowed to store their vote for
use; the decision is then taken according to the majority of votes cast. The possibility of s
votes intertemporally allows agents to concentrate their votes when preferences are more inte
although the scheme will not achieve full efficiency, storable votes typically lead to ex ante w
gains over non-storable votes. Welfare gains can be proven rigorously in the case of 2 voter
more voters, counterexamples can be found, but the analysis suggests that the welfare impro
should continue to hold if one of the following conditions is satisfied: (i) the number of vote
above a minimum threshold; (ii) preferences are not too polarized; (iii) the horizon is long eno
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Consider a committee that meets regularly over time to vote up or down proposa
affect all of its members. The committee members are heterogenous and have d
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preferences over the policy to be enacted. Decisions are taken by majority vote,
always a majority with weak preferences will win over a minority with more strongly h
opinions. Think of this simple alternative: although each member continues to accru
new vote at each meeting, he now has the option of storing his vote for future u
a member abstains at the first meeting, he will be able to cast either 0, 1 or 2 votes
second; were he to abstain again, he would have up to 3 votes available for the next m
In other words, suppose votes are storable. Would this plausible procedural change i
the efficiency of the committee? If asked at some preliminary constitutional stage,
committee members prefer a system of storable votes? The purpose of this pap
propose such a mechanism and begin addressing the questions it raises.

Its main results, in the simplified setting the paper studies, are promising. By allo
voters to shift their votes intertemporally, storable votes lead them to concentrate
votes on times when preferences are more intense, and therefore increase the proba
obtaining the desired decision when it is more important. Counterexamples can be
but under plausible assumptions, ex ante welfare is higher than with standard m
voting with non-storable votes. In addition, storable votes appear to behave well e
voters follow plausible rules-of-thumb, as opposed to fully rational strategies. Fina
least in the examples analyzed in the paper, storable votes have better welfare pro
than tradable votes, besides being more transparent and procedurally simpler and t
objectionable both ethically and practically.

The research project was motivated by concerns with the mechanisms through
the European Union coordinates (or attempts to coordinate) the policies of its mem
The problem of achieving a unified policy while respecting the sovereignty of he
geneous countries is very difficult, and all reforms of European Union’s institution
caught between the need for the faster decision-making that majority voting provide
the importance of respecting each country’s priorities lest the whole process of integ
comes to an end. Intuitively, a country should be able to weigh more heavily when
damental interest is threatened, but at a price: as in the case of money, the choice to
control over one item should come at the cost of smaller disposable resources avai
the future. Storable votes fulfill this function. Other mechanisms may do so too, bu
able votes have the advantage of being extremely simple: the mechanism is very n
can be explained in a few words and induces very intuitive behavior. Storable votes a
an optimal mechanism, but they are so simple that they could realistically be implem

Of course the importance of preserving strongly felt minority preferences extends
beyond the immediate challenges of the European Union, to the design of most dem
institutions. The paper refers to the specific example of the European Central Bank b
it provides a concrete example of a repeated binary voting game with fixed agenda, a
this simple setting that this first model studies. But it should be clear that there is no r
why storable votes should not be studied eventually for potential applications to g
committees.

The idea of using more resources, here more votes, when a decision is valued m
very natural, but storable votes have no clear precedent in the literature. The two
relations are vote trading (see, for example, Buchanan and Tullock, 1962; Coleman
Brams and Riker, 1973; Ferejohn, 1974; Philipson and Snyder, 1996; Piketty, 199

cumulative voting (Dodgson, 1884; Sawyer and MacRae, 1962; Brams, 1975; Cox, 1990;
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Guinier, 1994; Gerber et al., 1998, among others). But storable votes are differen
both.

Storable votes differ from vote trading (without monetary exchanges) on two
grounds. First, because they rely on individuals acting alone, storable votes are a s
and more transparent institution. When votes are exchanged interpersonally, trade
find each other, competitors must outbid one another and future promises must be en
How these steps take place depends on auxiliary, but essential, institutions;1 different al-
ternatives are possible and affect the outcome, creating potential sources of manip
These complications do not exist in the case of storable votes. Second, vote trading
in coalitions, and individuals unable to trade votes find their influence reduced both
and in the future. In the absence of side-payments, each voter faces a non-negligibl
ability of being rationed out of the market—a very costly outcome. With storable v
on the other hand, when an individual chooses to cast more than 1 vote in any peri
other committee members are automatically compensated by their increased influ
the other periods. At least in the simple example studied in the paper, storable vo
unambiguously welfare superior.

Cumulative voting is a system by which voters who are called to elect a subset o
didates in an election are free to allocate a given stock of votes among them as th
fit. It is a static mechanism where all voters choose simultaneously how to cast al
votes in a single election with multiple options. Storable votes on the contrary are
namic mechanism that applies to a series of binary choices taking place over time. A
passes, uncertainty is resolved both with respect to the voters’ evolving preferences
the stock of votes still available to one’s opponents.

Other voting schemes have some of the flavor of storable votes, but again all a
ferent. The observation that introducing a cost to voting selects voters with more in
preferences and thus may be efficiency-enhancing has been made before (for e
Börgers, 2001). But storable votes make that cost endogenous by allowing voters to
how much future influence to renounce, and at the same time grant voters a riche
options than the simple vote/abstain choice. Voting by successive veto (Mueller,
Moulin, 1982) and voting by successive pair-wise elimination (Moulin, 1979) are sch
where one of several possible alternatives is selected through a dynamic process o
nation. All information is known at the beginning, and the dynamic aspect allows to s
subgame perfect equilibria (and hence restrict the set of possible outcomes). The ma
cern is the theoretical design of desirable schemes when voters must choose amo
than two alternatives. Here instead, information is acquired over time, and the deci
binary each period.

The paper proceeds as follows. Section 2 describes the assumptions of the mod
tion 3 presents the main intuition behind storable votes in the simplest setting, when
are only 2 voters and 2 periods. Section 4 characterizes the equilibrium strategie
tion 5 derives welfare results in the case of 2 voters, for arbitrary length of the ho
while Section 6 extends the analysis toN voters and considers in detail the case of 3 v
1 See, for example, the discussion in Philipson and Snyder, 1996.
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2. The model

A committee ofn individuals meets regularly to take a common decisiond that can
assume two values:d ∈ {0,1}, where we can think ofd = 0 as maintaining the statu
quo, andd = 1 as change. In each period, each member’s preferences are indexe
parameterνit drawn from a continuous distributionF(ν), defined over the support[−1,1]
and symmetric around zero. In periodt , individuali ’s utility equalsνit dt : if νit is negative,
i prefersdt = 0; if νit is positive,i prefersdt = 1, and the absolute value ofνit measures
the intensity ofi ’s preferences. The distributionF(ν) is common across all committe
members and all periods, andνit is independently distributed both across individuals
across time. The committee takes the decision every period for a total ofT periods, where
T is finite.

For concreteness, think of the committee as the Governing Council of the Eur
Central Bank, meeting each month to decide whether to maintain current interes
(d = 0), or to change them(d = 1), under the assumption that both the direction of
possible change and, more controversially, its size are known before the meeting
member of the Council has preferences over European monetary policy and these
ences need not be homogenous, reflecting different needs of the national economie
member’s preferences are summarized byνit .2

Every period each committee member is given one vote. He can cast it in favor
option he prefers, or store it for use at a later time. Thus in period 1, a member ca
either 0 or 1 votes; if he decides to save his vote, in period 2 he will have a total of 2
at his disposal and will decide how many of these, if any, to use; and so on in all succ
periods until timeT when the game ends. We assume that votes can be stored b
borrowed to avoid the difficult problems that could arise in practice if one member
to run out of votes, but we will show later that the assumption is unimportant.3 Subject to
the budget constraint that the votes cast cannot exceed the number of votes availab
member is asked to indicate his preferred decision and the number of votes he is
to spend to support his choice. When individuals vote, they know the realization of
currentνi,t and the probability distributionF , but cannot observe the preferences of
other members and do not know their own future valuations. On the other hand, be
the initial allocation of votes and the history of the game are known, the number of
that each player has at his disposal is common knowledge.

2 The assumption of i.i.d. shocks is not ideal in this context.
3 The constraint on borrowing is common to existing policy mechanisms that rely on market-type behav

example, environmental regulation through tradable pollution licences), because it reduces the costs of
and inexperience, and increases the credibility of the rules. In addition, when members are subject to appo
or elections, the inability to borrow from the future limits the extent to which current members can expro

the power of their successors.
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The committee selectsd according to which of the two alternatives has received m
votes. If the votes are equal, the preferences of members who have cast zero votes
sidered; if the tie is still not broken, the decision is taken with a coin toss. The tie-bre
mechanism seems plausible and has some advantages in deriving analytical soluti
does not affect the substance of the results.4

The individuals’ objective is to announce a policy preference and choose a nu
of votes each period so as to maximize the expected flow of utility over the whole
horizon. Given a common discount factorδ, the problem amounts to maximizingEUi =
E(

∑
t δ

t νit dt ), whereE is the expectations operator, subject to the constraint that for
committee member the stock of available voteskit equals the votes stored the previo
period plus the allocation of 1 new vote (kit = kit−1 − xit−1 + 1, wherexit−1 are votes
cast byi at t − 1). Call Xt the vector of strategies, i.e. the number of votes cast by
voters at timet . The state of the game is given by the profile of available votes amon
members and calendar time:(Kt , t). We restrict attention to strategies that depend only
the current state:xt (Kt , t). The ex ante value of the game to individuali when all players
follow optimal strategies is denotedEV i

t (Kt , t).
The goal of the paper is to compare the storable votes scheme to the more trad

case where votes are not transferable over time, and thus each individual always ca
vote in favor of his preferred alternative. The two games are identical if the time ho
reduces to a single period, but differ otherwise. The storable votes game requires
thought: the choice of how many votes to cast reflects not only the current intens
preferences, relative to expected future preferences, but also the probability that
be pivotal, today or in the future, and thus the expectation of the other players’ v
behavior over time. It is a non-stationary dynamic game, where each individual’s op
strategy will be conditioned on the realization of his preference shock, on the distribut
available votes among all players and on calendar time. A simple example builds in
for the results that follow.

3. An example

Consider the simplest case where two votersi andj must take decisiond in two con-
secutive periods. In periodT −1, they are endowed with 1 vote each; they will both rece
an additional vote in periodT , but the game will then end. AtT they will both spend al
available votes on their preferred alternative5; thus the only problem each player must so
is what preference to announce and whether to cast 1 or 0 votes in its support atT − 1.

4 Other tie-break rules—no weight on zero voters; status quo wins when votes are tied (with or witho
sidering zero voters)—always yielded the same qualitative results. In the application of the game to the E
Central Bank, we could assume that the decision is between a cut(d = −1) and an increase(d = 1) in interest
rates, with the status quo(d = 0) prevailing in case of ties. However, this set-up minimizes the role of the s
quo, which in fact is often the preferred option for most central bankers. In any case, the results of the two
are identical up to a factor of proportionality in expected payoffs.

5 The only possible exception is the voter left with a single vote if state(2,1) is realized atT . We can appea
to undominated strategies, but note also that in any case his voting decision is always irrelevant, both

opponent’s strategy and for payoffs.
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Because preferences and votes are announced simultaneously, and preferences s
i.i.d., a voter will always announce preferences truthfully: he cannot manipulate h
ponent’s strategy and with 2 voters each always has a positive probability of affecti
outcome. The choice reduces to the number of votes to cast.

Consider individuali, and supposeνiT −1 > 0 (thusi prefersd = 1). His expected utility
from casting 0 or 1 vote is given by:6

Eui
T −1(xi = 0) = νiT −1

(
3

4
pj0 + 1

2
pj1

)
+ δ

(
pj0EV i

T (2,2) + pj1EV i
T (2,1)

)
, (1)

Eui
T −1(xi = 1) = νiT −1

(
pj0 + 3

4
pj1

)
+ δ

(
pj0EV i

T (1,2) + pj1EV i
T (1,1)

)
, (2)

wherepjν is the probability thatj castsν votes atT − 1, andEV i
T (s, k) is i ’s expected

value of the game in the next and final period, given stocks of available votess (for playeri)
andk (for playerj ). Comparing (1) and (2), we see thati will cast 1 vote atT − 1 if and
only if:

νiT −1/4� δ
(
pj0

(
EV i

T (2,2) − EV i
T (1,2)

) + pj1
(
EV i

T (2,1) − EV i
T (1,1)

))
. (3)

Solving next period’s expected values, we can obtain an explicit solution for the op
strategy. In periodT , both players cast all votes they have, and the one with most
wins with probability 1. Thus:

EV i
T (2,1) =

0∫
−1

ν dF(ν)(0) +
1∫

0

ν dF(ν)(1) =
1∫

0

ν dF(ν) (4)

since wheneverνiT is negative,i will be able to imposed = 0, and wheneverνiT is posi-
tive, d will be equal 1. The player with fewer votes will not be able to influence the ch
of d , but half of the times his opponent’s preferred choice matches his own. Hence:

EV i
T (1,2) = 1/2

0∫
−1

ν dF(ν) + 1/2

1∫
0

ν dF(ν) = 0. (5)

Finally, when the two players have the same number of votes, the value of the ga
periodT is identical to the value of the one-period non-storable votes game (with
votes). Call the value of this latter gameW , noticing that it is time independent and th
any number of equal votes is equivalent. For any realization ofνiT , player i expects to
obtain his preferred value ofd with probability 3/4. That is,

EV i
T (1,1) = EV i

T (2,2) =
0∫

−1

ν dF(ν)

(
3

4
(0) + 1

4
(1)

)
+

1∫
0

ν dF(ν)

(
3

4
(1) + 1

4
(0)

)

6 Voter i obtains his desired outcome with probability 1 if his opponent casts fewer votes; with proba
3/4 if j casts the same number of votes (either becausei andj agree—with probability 1/2—or because the
disagree buti wins the coin toss—with probability(1/2)(1/2) = 1/4), and with probability 1/2 if j casts more

votes (because 1/2 is the probability thati andj agree).
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EV i
T (1,1) = EV i

T (2,2) = 1

2

1∫
0

ν dF(ν) = W. (6)

Substituting (4)–(6) into (3), we obtain:

νiT −1/4� δ(pj0 + pj1)W

or

νiT −1 � 4δW if νiT −1 > 0. (7)

It is easy to verify that ifνiT −1 is negative the same logic leads voteri to cast his vote
if and only if −νiT −1 � 4δW .7 Thus i ’s optimal strategy is to identify a threshold val
α ≡ 4δW > 0 and cast 1 vote whenever|νiT −1| is larger or equal toα, and cast 0 vote
whenever|νiT −1| is smaller thanα. Notice that in this two-period example the equilibriu
is unique—in fact it is an equilibrium in dominant strategies. The thresholdα equals the
average intensity of preferences (discounted), and is strictly smaller than 1 as long a
is any probability mass outside the extreme values−1 and 1. In the simple case whe
F(ν) is uniform andδ = 1, α = 1/2.

The conclusion was expected: ifi ’s policy preference is particularly strong today,
will be willing to sacrifice some of his possible future power to increase his chanc
obtaining the desired outcome; vice versa, if his policy preference is weak, he will p
to abstain today and increase his influence tomorrow. It was this intuition that mot
the paper.

To evaluate the welfare effect of storable votes, consider their impact on ex ante
Before the preference shock is realized, the expected value of the game for playeri equals:

EVT −1(1,1)

=
α∫

0

ν dF(ν)

(
3

4
pj0 + 1

2
pj1

)
+

0∫
−α

ν dF(ν)

(
1− 3

4
pj0 − 1

2
pj1

)

+ (
2F(α) − 1

)
δW(pj0 + 2pj1) +

1∫
α

ν dF(ν)

(
pj0 + 3

4
pj1

)

+
−α∫

−1

ν dF(ν)

(
1− pj0 − 3

4
pj1

)
+ 2

(
1− F(α)

)
δWpj1. (8)

7 If νiT −1 is negative,i ’s expected utility from playing 1 or 0 is analogous to Eqs. (1) and (2) above, bu
negative preference shock now multiplies the corresponding probability of losing, as opposed to winning
instantaneous utility is then different from zero only ifi does not succeed in imposing his preference ford = 0).
The probability of losing when casting 1 or 0 votes is the complement to 1 of the probability of winnin

derived earlier, and the two expressions for expected utility are then immediately calculated.
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Voter j faces an identical problem and conditions his voting behavior on the same
holdα: he will vote 0 with probability 2[F(α) − 1/2], and 1 with probability 2[1− F(α)]
(using, as in (8), the symmetry of the probability distribution). Substituting these v
for pj0 andpj1, the expected value of the two-period game for either player become

EVT −1(1,1) =
α∫

0

ν dF(ν)

(
F(α) − 1

2

)
+

1∫
α

ν dF(ν)F (α) + δW. (9)

Compare (9) to the ex ante value of the two-period non-storable votes gameWT −1,
where the finite horizon impliesWT −1 = W + δW andW is given by (6).EVT −1(1,1) =
WT −1 atα = 0 or 1, and:

∂EVT −1

∂α
= f (α)

( 1∫
0

ν dF(ν) − α

2

)
(10)

wheref (α) is the densityf (ν) evaluated atα, and thus is positive. The derivative (1
is positive atα = 0 and has a single root; withEVT −1(1,1) = WT −1 at α = 0 and 1,
it follows thatEVT −1(1,1) > WT −1 for all α ∈ (0,1). And sinceα is strictly positive and
for any non-degenerateF(ν), smaller than 1, we conclude that ex ante utility must ind
be strictly higher with storable votes.

The result is again intuitive and is clearly visible in expression (9). As long asα is
strictly interior, F(α) ∈ (1/2,1) and (F (α) − 1/2) ∈ (0,1/2): the positive thresholdα
shifts probability mass from payoffs with relatively low value (when|v| is smaller thanα)

to payoffs with relatively higher value (when|v| is larger thanα): the possibility to store
votes increases the likelihood that a player will win when his preference is stronge
thus raises ex ante utility.

Notice that the argument does not rely on the equilibrium value ofα—any threshold
strictly between 0 and 1 would lead to welfare gains. Indeed, we can say something
about the robustness of the welfare results if voters choose incorrect thresholds,
portant consideration in practical applications. When the two thresholds are equal, a
must be in equilibrium, the welfare gain always holds. When they differ, callα voter i ’s
threshold, andβ voterj ’s. Then:

EV i
T −1(1,1) =

α∫
0

ν dF(ν)

(
F(β) − 1

2

)

+
1∫

α

ν dF(ν)F (β) + δW
(
1+ 2

(
F(α) − F(β)

))
. (11)

It is not difficult to verify that if δ = 1,EV i
T −1(1,1) > WT −1 for all α ∈ (0,1), indepen-

dently ofβ (andEV i
T −1(1,1) = WT −1 atα = 0 or 1).8 If the second period is discounte

8 Whenδ = 1,EV i
T −1(1,1) � WT −1 if 1/2

∫ 1
α ν dF(ν) �

∫ 1
0 ν dF(ν)[F(α) − 1], a condition that does no
depend onβ .
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limits begin to appear as to how different the thresholds can be, but even for very sδ
there is a sizable range of acceptable thresholds values, i.e. values consistent with
gains. In Fig. 1, the area between two curves labeled with the sameδ value corresponds t
the acceptable area at thatδ whenF(ν) is Uniform.

4. Equilibrium

Having verified the intuitive appeal of storable votes in the simplest setting, we
to extend the analysis to more general cases, and the first step is to characterize t
librium strategies. We restrict ourselves to undominated strategies (ensuring that
will vote sincerely) and define a strategy asmonotonic if, at a given state, the number
votes cast is monotonically increasing in|νit |, the voter’s intensity of preferences. Th
the following results must hold:

Lemma 1. At any given state, all best response strategies are monotonic.

Proposition 1.

(i) There exists a perfect Bayesian equilibrium in pure strategies.
(ii) Equilibrium strategies are monotone cutpoint strategies.

(The proofs are in Appendix A.)
Proposition 1 confirms that the intuitive nature of the equilibrium in the two-voter

period case holds more generally. Because the probability of obtaining the desired ou
is increasing (if possibly weakly) in the number of votes cast, at any given state and
as given the other voter’s strategies the optimal number of votes cast cannot be dec

in the intensity of preferences. Once the existence of an equilibrium is established (in the
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first part of the proposition), the observation that equilibrium strategies must take the
of monotone cutpoints then follows immediately. The number of votes that an indiv
has at his disposal is always finite, while the support of|νit |, the segment[0,1], is contin-
uous. At any state of the game, each voter must identify a series of thresholds that
the segment[0,1] into a finite number of intervals; for all realizations of|νit | in a given
interval,i casts the same number of votes, but higher intervals must correspond to a
number of votes. The thresholds are functions of the state of the game, including
dar time, and although their number cannot be larger than the number of votes th
has available, it can well be smaller—some feasible number of votes may never b
in equilibrium. Note that Proposition 1 does not state that the equilibrium is unique
uniqueness is not required for what follows.

Our goal is to identify the welfare properties of the storable votes game, but for arb
n andT this is very difficult. The problem is that the number of possible states grows
rapidly withT . Consider for example a 2-voterT -period game. Starting from state(ki, sj )

at t , we need to evaluate(ki +1)(sj +1) possible states at timet +1, and the ex ante valu
of the game in each of these states must be solved backwards from all the possible
it itself can give rise to, and so on at all times, using as anchor the expected value
possible different states in the terminal periods. The only possible solution method
be recursive. But here we encounter another problem: the game is non-stationary,
equilibrium strategies depend both on the current state and on calendar time. To ca
the expected values of future states, we need to weigh them by their probability of re
tion, and hence by the probabilities of the voters’ alternative strategies in equilibrium
these change over time, even for given states.

In the case of two voters, it is nevertheless possible to obtain analytical results, a
proceed to describe them in the next section.

5. Welfare—two voters

A useful implication of Proposition 1 is that we can now characterize each voter
pected instantaneous utility in equilibrium. Consider for example the symmetrical
(kt , kt ), where both voters enter the period with identical stocks of votes, and foc
symmetrical equilibria where the players select the same strategy at equal valuatio
equal state (and calendar time). CallEgi

t (kt , kt ) i ’s expected one period equilibrium utilit
(or payoff) before the realization of the preference shock when both players play o
strategies, andαx−1(t,K) � αx(t,K) the equilibrium thresholds such thati will castx −1
votes for all|νit | ∈ [αx−1(t,K),αx(t,K)). Then in a symmetrical equilibrium:

Egi
t (kt , kt ) =

α1(t,k)∫
0

ν dF(ν)

(
F

(
α1(t, k)

) − 1

2

)

+
α2(t,k)∫

ν dF(ν)
(
F

(
α1(t, k)

) + F
(
α2(t, k)

) − 1
) + · · ·
α1(t,k)
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αk(t,k)∫

αk−1(t,k)

ν dF(ν)
(
F

(
αk(t, k)

) + F
(
αk−1(t, k)

) − 1
)

+
1∫

αk(t,k)

ν dF(ν)F
(
αk(t, k)

)
(12)

where 0� αx(k, t) � αx+1(k, t) � 1,∀t,∀x ∈ {1, . . . , k − 1}.9 A more cumbersome bu
analogous expression describes expected one-period equilibrium payoffs in asymm
states.

Voter i ’s expected value of the game at state(ki
t , k

j
t ) before the realization of the pre

erence shock, is given by:

EV i
t

(
si
t , k

j
t

) = Egi
t

(
si
t , k

j
t

) + δEV i
t+1

(
si
t − xi

t
∗ + 1, k

j
t − x

j
t

∗ + 1
)

(13)

where the asterisk indicates the equilibrium strategy, with abuse of notation, we use a
expectations operator althoughEVt+1 must be calculated by taking expectations over b
x

j
t (j ’s current strategy) and (xi

t+1, x
j

t+1).
Expressions (12) and its analogue in asymmetrical states, and expression (13) a

to establish:

Proposition 2. For any distribution F(ν) continuous and atomless, and any T > 1,
EV1(1,1) > W1, with EV1(1,1)/W1 monotonically increasing in T .

Proof. Intuitively, the objective is to reduce the ex ante value of the game at the
tial period 1 to the sum of the expected one-period equilibrium payoffs correspo
to each possible state in all future periods. Exactly as in the 2-period case, in sym
states the possibility of storing votes when preferences are weak results in higher ex
one-period payoffs than in the game with non-storable votes. The problem comes i
symmetrical states: it is the prospect of being the weaker player in these states, p
protracted over time and absent by assumption from the game with non storable vot
creates concerns. But notice that in any symmetrical equilibrium and from any sym
cal state(kt , kt ), the probability of reaching state(si

t+τ , k
j
t+τ ) is identical to the probability

of reaching state(ki
t+τ , s

j
t+τ ). Thus when evaluating possible future states, we should

the same weight to the two opposite asymmetrical states and in effect consider thei
expected payoff. All we require then is that this mean payoff be higher, or at lea
smaller, than the expected payoff with non-storable votes. It is this observation that
us to establish the Proposition.

The intuition is formalized in the following two results:

9 When i castsxi votes, he obtains the decision he prefers with probability 1∗ Pr(xj < xi) + 3/4 ∗ Pr(xj =
xi )+1/2∗Pr(xj > xi) or, exploiting Proposition 1, 1/2[F(αi)+F(αi+1)]. For each interval ofνi values corres-
ponding to a given strategy,i ’s expected valuation is weighted by the probability of the decision he prefers m

the probability of the decision he opposes (to account for negative realizations ofνi ), or [F(αi) + F(αi+1) − 1].
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Lemma 2.

(i) Egi
t (kt , kt ) � W ∀t , with strict inequality at T − 1.

(ii) Egi
t (s

i
t , k

j
t ) + Egi

t (k
i
t , s

j
t ) � 2W ∀t .

Lemma 3. Suppose the following inequalities hold at t + 1:

(i) EV i
t+1(kt+1, kt+1) > Wt+1,

(ii) EV i
t+1(s

i
t+1, k

j

t+1) + EV i
t+1(k

i
t+1, s

j

t+1) � 2Wt+1.

Then they must hold at t .

The proofs of the two lemmas amount to manipulating expected equilibrium pa
(expression (12) and its counterpart in asymmetrical states) and the dynamic progra
equation (13). They can be found in Appendix A.

Once the two lemmas are established, Proposition 2 follows immediately. Beca
T all votes are cast,EVT (si

T , k
j
T ) + EVT (ki

T , s
j
T ) = 2W ; in addition in all symmetrica

equilibria atT − 1, EVT −1(kT , kT ) = EgT −1(kT , kT ) + δW > WT −1 by Lemma 1. By
induction, the inequalities hold at all previous timest , and in particularEV1(1,1) > W1 for
all T > 1. Notice thatEV1(1,1)/W1 cannot be decreasing inT because a larger number
periods means a larger number of states, each of which is associated with mean e
payoffs that are not smaller than the corresponding expected utilities with non-st
votes. �

The result confirms that the intuition that emerges so clearly in the 2-period exa
extends to a longer horizon. As in the 2-period case, the proof of Proposition 2 ma
use of the exact values of the equilibrium thresholds, but holds for all monotone sym
rical thresholds. For example, some positive welfare gains would still be realized if a
holding k votes followed this simple rule of thumb: at anyt , divide the interval[0,1] in
k + 1 subintervals of equal size, and onceνi is realized castxi votes, wherexi satisfies:
xi/(k + 1) � |νi | < (xi + 1)/(k + 1), xi ∈ {0,1, . . . , k}. If instead off equilibrium voters
strategies are not symmetric, we can use the proof of Lemma 2(ii) to show that the a
ex ante one-period payoff (averaged over the two voters) cannot be inferior to the ex
payoff under non-storable votes. By induction this will hold for the average ex ante
of the full game (although not necessarily for each individual player).

Finally, we have assumed so far that votes accrue to voters over time and future
tions cannot be borrowed. Relaxing this constraint would increase the set of possible
but at any state equilibrium strategies would still take the form of monotone threshold
the proof of Lemma 1). Because this is all is needed in Proposition 2, both the proo
the proposition would remain identical.10

10 This does not mean that the welfare gain would remain identical. But notice that the second best natu

problem implies that borrowing need not increase the expected value of the game.
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Fig. 2. Two periods,n voters;F(ν) uniform; δ = 1.

6. Welfare—N voters

With a larger number of voters, the properties of the mechanism are less cle
Figure 2 depicts the ratioEV1(1,1,1, . . . ,1)/W1(n) of the 2-period game whenF(ν)

is uniform andδ = 1, as function of the number of voters. Three features are particu
noticeable: First, the ratio is larger than 1, i.e. the welfare gains are positive, for alln dif-
ferent from 3 or 5. Second, the ratio behaves differently forn odd andn even: especially
when the number of players is small, the welfare gains from the scheme are much
for n even than forn − 1 or n + 1. Third, the ratio increases with the number of play
if n is odd and decreases ifn is even, finally converging to a value larger than 1 for an
large enough.11 The plot is sensitive to the distribution: although the difference betw
odd and even numbers of voters is preserved, the plot shifts upward ifF(ν) is unimodal
with a peak at 0, and downward if it bimodal at 1 and−1 (in both cases, more so the mo
concentrated is the distribution).

The sensitivity of the welfare comparison ton odd or even reflects for the most part t
sensitivity of non-storable votes. As expected, non-storable votes do reasonably we
the number of voters is odd, but are very inefficient when the number is even and
they improve over randomness only because they are able to recognize unanim
when voters are equally split, valuations are irrelevant and the tie-break rule dete
the outcome.12 The efficiency of storable votes, on the other hand, is quite stable
differentn: the problem posed by an even number of voters is less severe because it d
translate necessarily into a correspondingly even number of votes. Figure 3 plots sep
the ex ante value of the 2-period game with storable (the darker dots) and non-storab

11 The relevant formulas are in Appendix A. IfF(ν) is uniform, it can be shown analytically that the ra
EVT −1(1,1,1, . . . ,1)/WT −1(n) converges to a number higher than 1 as the number of players become
large. (In the limit, if the distribution of valuations is symmetric, a random choice is efficient, and so are
storable votes (Ledyard and Palfrey, 2002) and storable votes.WT −1 converges to expected welfare with rando
choice from above,EVT −1 converges toWT −1 from above.)

12 The problem is mitigated asn increases because the probability of a split into two equally sized group falls.
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Fig. 3. Expected 2-period payoff as share of efficiency;F(ν) uniform; δ = 1.

(the lighter dots), whenF(ν) is uniform andδ = 1, for n between 2 and 11. Both value
are expressed as shares of first best efficiency, defined as expected per capita pay
the 2 periods if the decision is always taken in favor of the side having higher ab
valuation (see Appendix A for the relevant formulas). The storable votes curve is qu
while non-storable votes give rise to two very different curves corresponding to eve
odd numbers of voters.

The figure explains the sensitivity of the relative welfare gains ton odd or even, bu
does not explain why storable votes should perform less well than non-storable vo
low, oddn. The intuition for the previous results withn = 2 relied on storable votes’ abilit
to elicit and reward strongly held preferences. This should presumably remain true,
see now that it is possible to find examples where storable votes do not generate
gains. Why?

The short answer is that rewarding the intensity of preferences raises efficiency, in
ante sense, if the stronger intensity of the minority is more than sufficient to compens
the higher probability of belonging to the majority—a complication that does not ex
the case of 2 voters. Preferences and the resulting equilibrium strategies must be s
a sufficient wedge exists between the expected valuations when losing and when w
If the horizon is short, as in our 2-period example, or if the distribution of valuatio
very concentrated, difficulties can arise.

This can be seen clearly in the expression forEV1(1,1,1) in the 2-period, 3-voter game

EV1(1,1,1) =
α1∫

0

ν dF(ν)

(
1

2
− 4

[
1− F(α1)

][
F(α1) − 1

2

])

+
1∫
ν dF(ν)

(
1 + 2

[
F(α1) − 1

]2)

α1

2 2
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(
1− 4

[
1− F(α1)

]2
[
F(α1) − 1

2

])
. (14)

By Proposition 1, in the first period each player votes 0 if his draw of|ν| is less than a
thresholdα1, and 1 otherwise.W = 1/2

∫ 1
0 ν dF(ν) is the expected one-period payoff wi

non-storable votes.13 With non-storable votes, both terms in parenthesis after the inte
equal 1/2 and the terminal period expected payoff, the last term of (14), is simplyδW .
With storable votes, each term is modified to capture the new possibility that a single
be the winner. In line with all previous results, storable votes reduce the probabil
obtaining the desired outcome at low valuations, in exchange for an increase in
probability at high valuations: the term in the first parenthesis is now smaller than/2,
while the term in the second is larger. However, contrary to the 2-voter case, the dec
the first probability can be larger than the increase in the second, and thus the overa
of the switch in probabilities will be positive if the difference in expected valuation w
abstaining or casting one’s vote is sufficiently large. In other words, the effect of sto
votes on one-period expected payoff is now sensitive to the shape of the distribut
valuations. The gain is larger the less polarized is the distribution.

Consider then the expected payoff in the terminal period. The possible states atT are:
(1,1,1), (2,2,2), (1,2,2) and its permutations, and(1,1,2) and its permutations. In th
last period, players always cast all their available votes. In states(1,1,1), (2,2,2) and
(1,2,2) (and the latter’s permutations) no voter can win alone, exactly as in the ca
non-storable votes, and the expected payoff equalsW . If the state is(1,1,2), however, the
voter controlling 2 votes can win even if the others disagree (if he wins the coin toss
because votes in the last period are cast independently of the intensity of preferenc
possible victory of the minority voter in this case is unambiguously efficiency reduci
the negative term in the last parenthesis in (14), which indeed reflects the probab
reaching state(1,1,2), i.e. the probability that a single voter abstains in period 1.14 Minor-
ity victories that do not mirror more intense preferences are costly, and because inten
preferences plays no role in the terminal period, we should expect storable votes to p
better over longer horizons.

To evaluate these intuitions, we ran numerical exercises with different time hor
and different distributions of valuations, focusing onn = 3. F(ν) is modeled as a modifie
Beta distribution, with support[−1,1] and constrained to be symmetrical relative to
(see the lower panel in Fig. 4). A single parameterb summarizes the curvature of th
distribution:b = 1 corresponds to the uniform; asb increases, the relative probability ma
around zero increases. The results are in Fig. 4, where the expected value of the s

13 Notice thatW is unchanged forn = 3 andn = 2. For arbitraryn:

W(n) =
1∫

0

ν dF(ν)(1/2)n−1

(
n − 1

n − 2+ In

2

)
whereIn = 1 if n is odd and 0 ifn is even.

14 In state(1,1,2), voters with a single vote obtain their preferred choice with probability 5/8, and the voter
with 2 votes with probability 7/8. ThusEgT (1,1,2) = 1/2W,EgT (2,1,1) = 3/2W , and 1/3(2EgT (1,1,2) +
EgT (2,1,1)) = 5/6W < W . The probability of reaching state(1,1,2) is 3[(2(1 − F(α1))2][2(F (α1) − 1/2)]

andEVT equalsW(1− 3[(2(1− F(α1))2][2(F (α1) − 1/2)](1/6)).



406 A. Casella / Games and Economic Behavior 51 (2005) 391–419

ferent

votes.

ins if

is

e. But the
elihood

e possi-

e did

almost
Fig. 4. Three voters,T periods;F(ν) beta;δ = 1.

Lower panel: beta distribution:F(ν) = (1− ν2)b−1/
∫ 1
−1(1− ν2)b−1 dν.

votes game at time 1, relative to the value with non-storable votes, is plotted for dif
horizons and differentbs. Two regularities emerge. First, at any horizon, an increase inb is
associated with better ex ante welfare properties for storable relative to non-storable
Although the figure does not show it, forb high enough, the ratioEV1/W1 is larger than
1 for all T . Second, forb > 1 storable votes are associated with ex ante welfare ga
the horizonT is longer than a critical valueT (b), whereT is lower the larger isb. For
b = 1, the uniform case, the conclusion might still hold—forT > 3 the ratioEV1/W1 is
monotonically increasing inT , as in the case of higherbs—but the simulated horizon
not long enough to reflect it.15

15 Three further comments. First, reducingδ (increasing future discounting) raisesEV1/W1, presumably be-
cause the more asymmetrical states expected to arise at the end of the horizon are then discounted mor
effect is not large because it is countered in part by the reduction in vote saving, and hence the higher lik
of these same states. Second, as the figure shows,EV1/W1 reaches a minimum atT = 3 for all b. Although a
higherT makes strategies more sensitive to intensities, even in asymmetrical states, it also multiplies th
bility of such states—according to the numerical exercises, the second effect dominates forT = 3, but becomes
relatively less important asT increases further. Finally, multiple equilibria are possible, but only in one cas
we in fact find two equilibria:b = 1 and state(5,4,3) atT −1 (which requiresT = 6). In one equilibrium, voteri
never plays 1 and playerj never plays 1 or 2. In the other equilibrium, playerj never plays 3 and playerz never
plays 1 or 2. Although the first equilibrium leads to slightly better welfare properties, the effect washes out

completely in the calculation ofEV1/W1. The figure uses the second equilibrium.
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Both the importance of the horizon and the role played by the shape of the distrib
should remains true at largern or whenn is even, but in these cases the positive featu
of storable votes, relative to non-storable votes, are stronger. When the number of
is even, storable votes reduce the reliance on the tie-breaking rule, an important p
effect whose role is larger whenn is small. When the number of voters is large, stora
votes tend to reward minorities that are not too small, a source of welfare gain that
whethern is even or odd.

Better welfare properties for longer time horizons pose a commitment problem; a
passes and the end of the game approaches voters may wish to renegotiate. We ig
aspect here—storable votes are evaluated ex ante at some constitutional stage, and
the possibility of commitment as granted. This said, the conclusion is pleasing; the
idea of storable votes relies on the possibility of intertemporal trades and we should
it to yield its potential benefits only if there is enough time for these trades to be pos

7. Storable vs. tradable votes

As discussed in the Introduction, storable votes inevitably bring to mind vote tra
How related are the two mechanisms? We rule out monetary transfers, and compa
able votes to log-rolling: exchanges of current for future votes.16 To study the two scheme
side by side we make them comparable through two assumptions: first, we ignore th
lem of enforcement posed by vote trading in our finite horizon setting—debtors wou
sure to renege in the last period, with the usual cascading effect. We posit instead
istence of credible outside enforcement. Second, with vote trading players who buy
are effectively borrowing against their future voting allocation. It seems appropriate th
allow borrowing also in the case of storable votes: we assume that when votes are s
the entire stock of votes is allocated to each player at time 1, for him to distribute
future decisions as he sees fit.

Begin with the simplest case: 2 voters and 2 periods. With storable votes, each
enters the game with 2 votes. Following the usual steps, it is easy to establish thati
will choose to cast 2 votes if|νi | � 4δW and 0 votes otherwise. Although the initial numb
of votes is different, the outcome is identical to the case studied earlier where each
was endowed with 1 new vote each period. The expected value of the game is agai
by Eq. (9).

Suppose now that votes are tradable, but not storable. At time 1, each voter has
and three options: he can offer to sell his vote now(S) (and have 2 votes next period, wh
his opponent will have 0, if the trade takes place); do nothing(N) (and have 1 vote eac
period, just like his opponent), or offer to buy a vote(B) (and have 0 votes next perio
when his opponent will have 2). CallpB the probability that a player offers to buy,pS

the probability that he offers to sell, andpN = 1 − pB − pS the probability that he doe
nothing. Givenνi , positive for simplicity, the three alternatives lead to expected utilitie

16 If, neglecting concerns of practical feasibility, we allow for monetary transfers, than it seems reason

focus on the optimal mechanism, which is not a voting mechanism (d’Aspremont and Gérard-Varet, 1979).
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Eui |S = pB(νi 1/2+ δ2W) + (1− pB)(νi 3/4+ δW),

Eui |N = νi 3/4+ δW,

Eui |B = pSνi + (1− pS)(νi 3/4+ δW). (15)

It is possible of course that both voters would want to buy, or both would want to
With a longer number of periods, prices would emerge, but in this simple examp
voter can offer more (or less) than a one-to-one exchange between a vote today an
tomorrow. Thus if both voters find themselves on the same side of the trade no exc
can be concluded, and this is reflected in (15). Given these equations, it is easy
that the optimal strategy is to offer to buy a vote whenever|νi | � 4δW , and offer to sell
otherwise. It follows that there is a deviation from the reference case of no-trade
when at time 1 one voter’s preference intensities are above the threshold, and the
below. But this is exactly what happens with storable votes (in all other cases, the pl
strategies cancel each other). And because the threshold is the same, it is not su
then that the expected value of the game is given once again by Eq. (9). With 2 playe
2 periods, the two voting mechanisms are identical.17 Indeed, one can conjecture that w
2 voters the result should continue to hold for any arbitrary time horizonT .

Is this true with more than 2 voters? Consider a 3-voters, 2-period game. With st
votes each player again enters the game with 2 votes. The optimal strategy in the first
is to abstain if|νi | < αSV and cast 2 votes otherwise, whereαSV ≡ 4δW(1−p2

0)/(1−p2
2),

andp0 = 1− p2 = 2[F(αSV ) − 1/2] (the superscriptSV stands for “storable votes”). Th
expected one period payoff atT − 1 and the ex ante value of the game are given by:

EgSV
T −1 = W +

1∫
αSV

ν dF(ν)
p2

0

2
−

αSV∫
0

ν dF(ν)p0p2,

EV SV
T −1 = EgSV

T −1 + δW
(
1− p0p

2
2

)
, (16)

with the probabilities defined above.
Consider now the case of tradable votes. The horizon continues to be 2 periods, im

that again each player can buy or sell at most 1 vote atT − 1. As in the case of 2 voters
there are three possible alternatives: each player can offer to sell, offer to buy, or do n
When a transaction is proposed, it is concluded only if there is at least one other vot
has made the complementary proposal. But now a new difficulty emerges: a voter w
to transact may be shut out of the market because his 2 opponents trade among them
Ruling out side-payments, no price and no bargaining can emerge in the 2-period
and we assume that if 2 willing buyers, for example, face a single seller, the success
will be chosen with a coin toss. Taking this into account, expected utilities from any o

17 One important caveat. For consistency with the rest of the paper, we are maintaining the informa
sumption made all along: a voter makes decisions knowing his preferences but not his opponent’s. In the
tradable votes, this can result in trades between voters on the same side of an issue, albeit with differen
ties. Whether a voter would want to reveal his true position is an interesting question not pursued here

example, the discussion in Mueller, 1989).
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three actions can be calculated as usual. Consider for example voteri, offering to sell his
vote. He succeeds in selling if:

(i) both other voters offer to buy (with probabilityp2
B);

(ii) one offers to buy and one does nothing (with probability 2pBpN); or
(iii) one offers to buy, one offers to sell and the coin toss is favorable toi (with probability

pBpS).

If i succeeds, then he is left with 0 votes today in exchange for 2 tomorrow, whi
opponents have 2 and 1 votes today and 0 and 1 tomorrow. In both periods, the vot
controls 2 votes alone determines the outcome; thusi ’s expected utility, conditional on
succeeding in selling, equalsνi/2+2δW (with νi positive for simplicity). Ifi ’s offer is not
accepted, that may be either because no-one is interested in buying (with probabilit(1−
pB)2), in which case no transaction takes place andi ’s expected utility equalsνi 3/4+δW ,
or because the other 2 voters trade among themselves (with probabilitypBpS), in which
casei carries no weight either this period or the next and his expected utility equalsνi/2.
Thus we can write:

Eui |S = (
p2

B + 2pBpN + pBpS

)
(νi/2+ 2δW)

+(1− pB)2(νi 3/4+ δW) + pBpSνi/2. (17)

The expected utilities associates with the two remaining alternatives are calculated
gously:

Eui |B = (
p2

S + 2pSpN + pBpS

)
νi + (1− ps)

2(νi 3/4+ δW) + pBpSνi/2,

Eui |N = pBpSνi + (1− 2pBpS)(νi 3/4+ δW). (17′)

Given these equations it is easy to establish that it is never optimal to do nothing. The
single relevant thresholdαM such that voteri offers to sell his vote if|νi | < αM , and offers
to buy otherwise (the superscriptM stands for “market”), where once againαM = 4δW .
Expected one period payoff atT − 1 and the ex ante value of the game are given by:

EgM
T −1 = W +

1∫
αM

ν dF(ν)
p2

S

2
−

αM∫
0

ν dF(ν)
1+ pS

2
pB,

EV M
T −1 = EgM

T −1 + δW(1− pSpB), (18)

wherepS = 1− pB = 2[F(αM) − 1/2].
Comparing Eqs. (16) and (18) is very instructive. It is particularly easy whenF(ν) is

Uniform, because in that caseαSV = αM = 0.5, andp0 = pS,p2 = pB . The expected
value of the game is unequivocally lower with tradable than with storable votes, a
that arises because expected payoffs are lower in both periods. And the reason is
tradable votes require two sides for a trade: with 3 voters, the buyer guarantees h
control over the public decision in the first period, and the seller in the second. The

voter, excluded from the transaction, has no voice in either periods. With storable votes,
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on the other hand, each voter decides his allocation of votes on his own. If a vot
cides to abstain in the first period, the probability of being pivotal increases for both
opponents; nor can the abstaining voter be sure of controlling the public decision
riod 2. The intuition seems robust: the welfare results are unchanged for allF(ν) we have
tried.18 The probability of being rationed when votes are tradable remains positive f
finite number of players, and although the game will be more complicated, the lo
unchanged. Similarly, the emergence of prices when trading occurs over a longer h
should be matched by an equivalent flexibility in the intertemporal program with sto
votes. We cannot draw general conclusions at this point, but there is no obvious reas
the welfare results should be reversed.

8. Conclusions

This paper has discussed a very simple—indeed natural—voting mechanism fo
mittees that meet repeatedly over time: voters are allowed to store their votes an
them intertemporally. As a result, voters cast more votes when their preferences ar
intense, and the probability of obtaining their preferred decision shifts from times
preferences are weaker to times when they are stronger. Relative to non-storable v
ante welfare should rise.

This transparent intuition appears clearly, and can be proven rigorously, in the c
two voters. When the number of voters is larger, some complications arise and cou
amples can be found, but the analysis suggests that the conclusion continues to hol
of the following conditions is satisfied:

(i) the number of voters is above a minimum threshold;
(ii) preferences are not too polarized;

(iii) the horizon is long enough.

Although the rationale for the scheme is transparent, the game is in fact compli
and a natural question is whether in practical applications voters would be able to id
the equilibrium strategies and reap the potential efficiency gains. We address this q
in a companion experimental paper (Casella et al., 2003). The experimental subje
not, for the most part, cast the equilibrium number of votes, but they consistently di
more votes when intensities were higher. This was enough to achieve efficiency gai
matched almost perfectly the predictions of the theory.

The model studied here is very simple, and some of its restrictive assumptions wil
to be relaxed before the promise of the voting scheme can be confirmed. Some nee
tensions are immediate generalizations of this initial model. The importance of the h
length suggests allowing for infinite horizon, keeping the analysis tractable, for exa
by having votes expire after a fixed number of periods, or by studying overlapping g
ations of committee members with fixed terms. Different information assumptions s

18 As b increases,αM becomes larger thanαSV , implying that the ex ante probability of putting one’s vote

for sale when votes are tradable increases more than the probability of abstaining.
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be studied—what if opponents’ preferences are known? What if at least their signs
their intensities, are known? In many applications, correlation among preferences
be allowed, either over time or across voters.

Other extensions require introducing new issues. How robust are the results
dogenous agenda? Because storable votes derive their value from intertemporal pl
influencing the order in which votes will be called could be important. An individua
a group controlling the agenda might be able, for example, to exhaust opponents
before an issue he considers crucial is decided. But the opposite can be argued to
ability to shift votes intertemporally provides everybody with more flexibility and migh
fact neutralize the advantage enjoyed by those who set the agenda.

A related if different question is the impact of storable votes on minorities. Advoc
of cumulative voting, the static multi-candidate counterpart of storable votes, have st
their potential for increasing the power of minorities (Guinier, 1994), an observation
firmed at least partially by formal and experimental analyses (Cox, 1990; Gerber
1998). Others have expressed concern that when voting is costly the voters most li
express their votes might be those with most extreme preferences (Campbell, 199
borne et al., 2000). Would decisions be dominated by extremists? What would the w
implications be then? Notice that once again the outcome is not obvious: when vo
storable, the cost of voting is endogenous and the majority can control a small mino
relatively low cost, if the coordination problem is not too severe.

Finally, we have maintained the assumption that aggregating voters’ preferences i
difficult by their divergence. Alternatively, we could model the voting problem as a c
mon value problem: voters have the same preferences but receive different signal
the optimal choice (for example, Feddersen and Pesendorfer, 1997; Piketty, 1999).
(1994) has argued that in this case market-type mechanisms applied to voting, in pa
spot markets for votes, are less efficient than simple majority voting, because they
abstentions and thus reduce the amount of information transmitted through voting. T
extent would this argument apply to storable votes? What if both private and commo
ues are present?

These questions are important and difficult, and will need to be addressed. Fo
we conclude that storable votes, although not the most efficient mechanism theore
possible, are very simple, could realistically be implemented and appear to take us
the way towards efficiency without violating our ethical priors.
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Appendix A

Proof of Lemma 1. Monotonicity. Supposeνit > 0 and call Pr(w|x) the probability thati
obtains the desired decision over the current proposal (“wins”) when castingx votes, i.e.
Pr(w|x) ≡ Pr(dt = 1|xi

t = x). For any number of votersn,Pr(w|x) must be monotonically
(if possibly weakly) increasing inx. Given the valuationνit , i ’s expected utility from cast
ing x votes equalsνitPr(w|x) + δEVt+1(k

i
t+1,EK−i

t+1) whereki
t+1 = ki

t − x + 1. Call x′
(x′′) the equilibrium number of votes cast by voteri whenνit = v′(v′′) (with v′ > v′′ > 0).
By definition of equilibrium, the following two inequalities must hold:

ν′Pr(w|x′) + δEVt+1
(
ki
t − x′ + 1,EK−i

t+1

)
� ν′Pr(w|x′′) + δEVt+1

(
ki
t − x′′ + 1,EK−i

t+1

)
,

ν′′Pr(w|x′′) + δEVt+1
(
ki
t − x′′ + 1,EK−i

t+1

)
� ν′′Pr(w|x′) + δEVt+1

(
ki
t − x′ + 1,EK−i

t+1

)
.

Adding the two inequalities, we obtain:

(ν′ − ν′′)
(
Pr(w|x′) − Pr(w|x′′)

)
� 0.

But with ν′ > ν′′ and Pr(w|x) monotonically increasing inx, this impliesx′ � x′′, estab-
lishing the result. The logic is identical, with the appropriate sign changes, forνit < 0.
Notice that the proof holds for any strategies chosen by the other voters, implying t
best response functions must be monotonically increasing.�
Proof of Proposition 1. (i) Existence of equilibrium in pure strategies. Formally, we are
looking for a perfect Bayesian equilibrium of a multi-stage game. An important sim
cation is that players’ types are i.i.d. across different periods: the game has no upda
information on players’ types, and if we restrict our focus to Markov strategies the
intertemporal link across periods is the evolution of the state variable—the accumu
or depletion of the votes’ stock (which is common knowledge), and the change in ca
time. It follows that we can find a perfect equilibrium by backward induction. In perioT ,
the dominant strategy is to cast all remaining votes. In periodT − 1, given the stateKT −1
the continuation value of the game depends only on the strategies atT − 1 (and on the
expected value of|νT | ≡ 2W , an exogenous parameter); the one-period payoff depen
the realization of one’s own typeνiT −1, and on the strategies atT −1; thus, given the state
the 2-period payoff of the game atT − 1, EUT −1(xT −1;νiT −1,KT −1), depends only on
current strategies andνiT −1. We can study the game atT − 1 as a one-stage simultaneo
move game. The game satisfies a number of conditions:

(i) other voters’ types do not enteri ’s payoff directly (their strategies do);
(ii) players’ types are independently distributed;

(iii) F(ν) is assumed to be continuous and atomless;
(iv) for each player, the strategies’ space is finite.

By using the notion of distributional strategies—joint distributions on actions and typ

Milgrom and Weber (1985) have shown that these conditions guarantee that an equilibrium
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exists, and that all equilibrium strategies are empirically indistinguishable from pure s
gies. (See also Fudenberg and Tirole, 1992, Section 6.8.) But if the game atT − 1 has an
equilibrium, then equilibrium strategies atT − 1 can be anticipated, as function of t
types’ realizations and the state atT − 1. Again, expected types’ realizations are exo
nous andKT −1 is determined completely by state and strategies atT − 2. Hence, given
νi,T −2 andKT −2, we can study the game atT − 2 as a one-stage game and rely once m
on Milgrom and Weber’s result. With a finite horizonT , the complete game has a fin
number of stages and states, and using backward induction we can replicate the pr
for each of them.

(ii) Monotone cutpoint strategies. Given existence, the result follows immediately fro
Lemma 1. �
Proof of Lemma 2. Begin by proving part (i) for symmetrical states. Recall that expe
one-period equilibrium payoff is given by (12), reflecting the optimal thresholds chos
the voters. Define a functionΨ (αx, . . . , αk) representing (fictional) expected payoff wh
thresholdsα1, . . . , αx−1 are set to zero, and all other thresholds are kept at their eq
rium values (and where to simplify notation we ignore the time subscript). By constru
Ψ (α1, . . . , αk) = Eg(k, k). We can show that the following two conditions hold:

(a) Ψ (αk) � W ,
(b) Ψ (αx, . . . , αk) � Ψ (αx+1, . . . , αk).

To establish (a), note that given (12) and the definition ofΨ (αk), we can write:

Ψ (αk) ≡
αk∫

0

ν dF(ν)

(
F(αk) − 1

2

)
+

1∫
ak

ν dF(ν)F (αk)

whereαk ∈ [0,1]. At αk = 0 or αk = 1,Ψ (αk) = W ; in addition it is easy to verify tha
∂Ψ (αk)/∂αk is positive atαk = 0 and has a single root in the intervalαk ∈ (0,1). Hence
Ψ (αk) > W ∀αk ∈ (0,1) andΨ (αk) = W if αk = 0 or 1. But from (12) we also know:

Ψ (αx, . . . , αk) � Ψ (αx+1, . . . , αk) ⇐⇒
αx∫

0

ν dF(ν)

(
F(αx) − 1

2

)

+
αx+1∫
αx

ν dF(ν)
(
F(αx) + F(αx+1) − 1

)
�

αx+1∫
0

ν dF(ν)

(
F(αx+1) − 1

2

)
. (A.1)

The left-hand side of (A.1) is identical to the right-hand side ifαx = 0 or αx = αx+1. At
αx = 0, the left-hand side is increasing inαx and again it can easily be shown that t
derivative has a single root. HenceΨ (αx, . . . , αk) > Ψ (αx+1, . . . , αk) ∀αx ∈ (0, αx+1) and
Ψ (αx, . . . , αk) = Ψ (αx+1, . . . , αk) for αx = 0 orαx = αx+1, and (b) is established.

Finally, it follows that (a) and (b) can both hold with equality only if all thresholds
either 0 or 1 or if there exist anαx andαx+1 such thatα1 = · · · = αx = 0 andαx+1 =

· · · = αk = 1, with x ∈ {1, . . . , k − 1}, i.e. only if the same strategy is followed for all
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realizations ofνi . If at least one threshold is strictly between 0 and 1, then the inequal
part (i) of Lemma 2 is strict. We expect that to be the case in all symmetrical states,
is particularly easy, and sufficient for our purposes, to show that this must be true atT − 1.
Suppose both players are endowed withk votes atT − 1. We show that castingx votes for
all realizations ofνi cannot be an equilibrium. GivenνiT −1, which we suppose positiv
for simplicity, the expected utility of voteri castingx votes is given by:EUi

T −1(x) =
νiT −1[Pr(xj

t < x) + 3/4Pr(xj
t = x) + 1/2 Pr(xj

t > x)] + δW [Pr(xj
t = x) + 2Pr(xj

t > x)].
It is easy to establish then that:

EUi
T −1(x

′ + 1) − EUi
T −1(x

′) = (νiT −1/4− δW)
[
Pr

(
x

j
t = x′ + 1

) + Pr
(
x

j
t = x′)],

EUi
T −1(x

′) − EUi
T −1(x

′ − 1) = (νiT −1/4− δW)
[
Pr

(
x

j
t = x′)+Pr

(
x

j
t = x′ − 1

)]
.

Recall that 4δW ∈ (0,1). Take anyx′ such that Pr(xj
t = x′) > 0. It is immediate to show

that if νi < 4δW , then playeri must preferx′ − 1 to x′, and if νi > 4δW he must prefer
x′ + 1 to x. If x′ equals 0 ork only one direction of deviation is feasible, but in all cas
nox can be the equilibrium strategy for allνi . Part (i) of Lemma 2 is established.

(ii) To establish part (ii) of the lemma for asymmetrical states, we follow the same l
Supposes > k, and denote{γ1, γ2, . . . , γk+1} the equilibrium thresholds for the play
holdings votes att , and{β1, β2, . . . , βk} the equilibrium thresholds for the player holdin
k votes (where, again, to simplify notation time subscripts are omitted). Notice tha
player holdings votes can never gain by casting more thank + 1. We can write:

Egi
(
ki, sj

) + Egi
(
si , kj

) =
β1∫

0

ν dF(ν)
(
F(γ1) − 1/2

)

+
β2∫

β1

ν dF(ν)
(
F(γ1) + F(γ2) − 1

) + · · · +
1∫

βk

ν dF(ν)
(
F(γk) + F(γk+1) − 1

)

+
γ1∫

0

ν dF(ν)
(
F(β1) − 1/2

) +
γ2∫

γ1

ν dF(ν)
(
F(β1) + F(β2) − 1

) + · · ·

+
γx+1∫
γx

ν dF(ν)
(
F(βx) + F(βx+1) − 1

) + · · ·

+
γk+1∫
γk

ν dF(ν)
(
F(βk)

) +
1∫

γk+1

ν dF(ν). (A.2)

Define a functionΨ (β1, . . . , βx, γ1, . . . , γx+1), representing the (fictional) sum of expect
payoffs in (A.2) when thresholdsβx+1, . . . , βk−1, γx+2, . . . , γk+1 are set to 1 (which is now
more convenient than setting the omitted thresholds to 0), and all other thresholds a

at their equilibrium values. By construction,Ψ (β1, . . . , βk, γ1, . . . , γk+1) ≡ Egi(si, kj ) +
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Egi(ki, sj ). As in the symmetrical case, we proceed by first evaluating the functioΨ

at the smallest threshold and then adding successively higher ones. We can show
following three conditions hold:

(a) Ψ (γ1) � 2W, Ψ (β1) � 2W ;
(b) Ψ (γ1, β1) � Ψ (γ1), Ψ (γ1, β1) � Ψ (β1);
(c) (i) Ψ (β1, . . . , βx+1, γ1, . . . , γm) � Ψ (β1, . . . , βx, γ1, . . . , γm) where eitherβx+1 > γm

or γm = 1,
(ii) Ψ (β1, . . . , βx, γ1, . . . , γm+1) � Ψ (β1, . . . , βx, γ1, . . . , γm) where eitherγm+1 >

βx or βx = 1.

To verify (a), notice that given (A.2) we can write:

Ψ (γ1) ≡
1∫

0

ν dF(ν)
(
F(γ1) − 1/2

) +
γ1∫

0

ν dF(ν)1/2+
1∫

γ1

ν dF(ν).

DifferentiatingΨ (γ1) with respect toγ1, it is easy to see thatΨ (γ1) > 2W ∀γ1 ∈ (0,1) and
Ψ (γ1) = 2W if γ1 = 0 or 1. The same reasoning, and a corresponding equation, est
Ψ (β1) � 2W . To verify (b), notice that from (A.2) we also know:

Ψ (β1, γ1) � Ψ (γ1) ⇐⇒
1∫

0

ν dF(ν)
(
F(β1) − 1/2

)
�

β1∫
0

ν dF(ν)1/2,

an inequality that holds strictly for allβ1 ∈ (0,1), and weakly atβ1 = 0 or 1. Again an
equivalent condition establishesΨ (β1, γ1) � Ψ (β1).

Finally, to verify (c), consider case (i) first. We can derive from (A.2):

Ψ (β1, . . . , βx+1, γ1, . . . , γm) � Ψ (β1, . . . , βx, γ1, . . . , γm) ⇐⇒
1∫

βx+1

ν dF(ν)
(
F(γx+2) − F(γx)

) +
γx+2∫
γx

ν dF(ν)
(
F(βx+1) − 1

)
� 0, (A.3)

whereγx+2 � γm and hence eitherγx+2 � βx+1 or γx+2 = 1 (and similarly, eitherγx �
βx+1 or γx = 1, whereγx � γx+2). At γx+2 = 1, the inequality in (A.3) becomes:

1∫
βx+1

ν dF(ν)
(
1− F(γx)

) −
1∫

γx

ν dF(ν)
(
1− F(βx+1)

)
� 0,

a condition that is satisfied for allγx � βx+1 or atγx = 1. If γx+2 �= 1, notice that (A.3)
holds with equality atγx+2 = γx and becomes:

1∫
ν dF(ν)

(
F(βx+1) − F(γx)

) −
βx+1∫

ν dF(ν)
(
1− F(βx+1)

)
� 0
βx+1 γx
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at γx+2 = βx+1, an inequality that is satisfied for allβx+1 � γx . But differentiating (A.3)
with respect toγx+2, we can easily establish that for allβx+1 < 1 the derivative has
unique root which must be a maximum. Hence if the inequality is satisfied atγx+2 = γx

and atγx+2 = βx+1, it must be satisfied everywhere. Forβx+1 = 1, (A.3) equals 0 for any
γx+2, γx . We conclude that condition (b) (i) is established. The proof of condition (b
proceeds identically, and we leave it to the reader.�
Proof of Lemma 3. Once again, we proceed in two steps. First, we consider symm
cal states; then we prove the corresponding result for asymmetrical states. What f
could be written in matrix form, but the expanded notation, though cumbersome, is
transparent and is maintained here.

Consider state(kt , kt ). We can write:

EV i
t (kt , kt ) = Egi

t (kt , kt )

+δ
[
pi0

(
pj0EV i

t+1(kt + 1, kt + 1) + pj1EV i
t+1(kt + 1, kt ) + · · ·

+pjkEV i
t+1(kt + 1,1)

) + pi1
(
pj0EV i

t+1(kt , kt + 1)

+pj1EV i
t+1(kt , kt ) + · · · + pjkEV i

t+1(kt ,1)
) + · · ·

+pik

(
pj0EV i

t+1(1, kt + 1) + pj1EV i
t+1(1, kt ) + · · · + pjkEV i

t+1(1,1)
)]

or, more compactly:

EV i
t (kt , kt )

= Egi
t (kt , kt ) + δ

[
k∑

xi=0

pixi

(
k∑

xj =0

pjxj
EV i

t+1

(
kt − xi + 1, kt − xj + 1

))]
(A.4)

wherepjx is the probability that|νjt | falls into the interval that corresponds toj ’s op-
timal strategyx. But the game is symmetric, and starting from the symmetrical s
(kt , kt ),pix = pjx for all x. We can thus collect terms and rewrite (A.4) as:

EV i
t

(
ki
t , k

j
t

) = Egi
t (kt , kt ) + δ

[
k−1∑
x=0

[
pix

k∑
r=x+1

pjr

(
EV i

t+1(k − x + 1, k − r + 1)

+EV i
t+1(k − r + 1, k − x + 1)

)]

+
k∑

x=0

pixpjxEV i
t+1(k − x + 1, k − x + 1)

]
. (A.5)

Substituting the conditions stated in Lemma 3, we then obtain:

EV i(kt , kt ) > Egi(kt , kt ) + δWt+1

[
2

k−1∑ k∑
pixpjr +

k∑
pixpjx

]
.
t t

x=0 r=x+1 x=0
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Once again usingpixpjr = pirpjx , it is not difficult to verify that the probabilities, whic
span all possible equilibrium strategies, sum up to 1. Hence:

EV i
t (kt , kt ) > Egi

t (kt , kt ) + δWt+1.

But we know by Lemma 2 thatEgi
t (kt , kt ) � W . HenceEV i

t (kt , kt ) > Wt(k, k), and the
first part of Lemma 3 is established.

The logic of the proof is identical in the asymmetrical state(si
t , k

j
t ). We can write:

EV i
t

(
si
t , k

j
t

) + EV i
t

(
ki
t , s

j
t

)
= Egi

t

(
si
t , k

j
t

) + Egi
t

(
ki
t , s

j
t

) + δ
[
pi0

(
si
t , k

j
t

)(
pj0

(
si
t , k

j
t

)
EV i

t+1

(
si
t + 1, k

j
t + 1

)
+· · · + pjk

(
si
t , k

j
t

)
EV i

t+1

(
si
t + 1,1

)) + · · ·
+pis

(
si
t , k

j
t

)(
pj0

(
si
t , k

j
t

)
EV i

t+1

(
1, k

j
t + 1

) + · · · + pjk

(
si
t , k

j
t

)
EV i

t+1(1,1)
)]

+ δ
[
pi0

(
ki
t , s

j
t

)(
pj0

(
ki
t , s

j
t

)
EV i

t+1

(
ki
t + 1, s

j
t + 1

) + · · ·
+pjs

(
ki
t , s

j
t

)
EV i

t+1

(
ki
t + 1,1

)) + · · ·
+pik

(
ki
t , s

j
t

)(
pj0

(
ki
t , s

j
t

)
EV i

t+1

(
1, s

j
t + 1

) + · · · + pjs

(
ki
t , s

j
t

)
EV i

t+1(1,1)
)]

.

(A.6)

As always, the probability that a given strategy is chosen by either player is a fun
of the state; and since we are considering two different states this dependence is rec
explicitly. Usingpix(s

i
t , k

j
t ) = pjx(k

i
t , s

j
t ) ∀x, s, k, t , we can simplify (A.6):

EV i
t

(
si
t , k

j
t

) + EV i
t

(
ki
t , s

j
t

)
= Egi

t

(
si
t , k

j
t

) + Egi
t

(
ki
t , s

j
t

) + δ

[
pi0

(
si
t , k

j
t

) k∑
x=0

pjx

(
si
t , k

j
t

)
×

(
EV i

t+1

(
si
t + 1, k

j
t − x + 1

) + EV i
t+1

(
ki
t − x + 1, s

j
t + 1

)) + · · ·

+pis

(
si
t , k

j
t

) k∑
x=0

pjx

(
si
t , k

j
t

)(
EV i

t+1

(
1, k

j
t − x + 1

)

+EV i
t+1

(
ki
t − x + 1,1

))]
. (A.7)

More compactly, we can write:

EV i
t

(
si
t , k

j
t

) + EV i
t

(
ki
t , s

j
t

)
= Egi

t

(
si
t , k

j
t

) + Egi
t

(
ki
t , s

j
t

) + δ

s∑
r=0

pir

k∑
x=0

pjx

(
EV i

t+1

(
si
t − r + 1, k

j
t − x + 1

)
( j ))
+EV i

t+1 ki
t − x + 1, st − r + 1 . (A.8)
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(All probabilities are now conditional on the same state, and in absence of ambigu
notation is simplified.) Substituting the conditions in Lemma 3, we then derive:
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� Egi
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(
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t

(
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j
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) + 2δWt+1

s∑
r=0

k∑
x=0

pirpjx.

It is easy to verify that the probabilities sum up to 1. Hence:
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(
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(
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)
�

(
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(
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) + δWt+1
) + (
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t

(
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j
t

) + δWt+1
)
.

But by Lemma 2, the second part of Lemma 3 is then established.�
Derivation of Fig. 2. When votes are storable and all players can either cast 1 vo
abstain, the probability of obtaining one’s preferred outcome when voting equals:

n−1∑
z=0

pz
1p

n−z−1
0

(
n − 1

z

)[
1

2

(
1+

(
1

2

)z (
z

z−Iz

2

))]
,

whereIz ≡ 1 for z odd, and 0 forz even.
The corresponding probability when abstaining equals:

n−1∑
z=0

pz
1p

n−z−1
0

(
n − 1

z

)[
1

2

(
1+ (1− Iz)

(
1

2

)n−1 (
z
z
2

)(
n − z − 1
n−z−2+In

2

))]
,

whereIn ≡ 1 for n odd, and 0 forn even.
From Proposition 1, the probabilitiesp1(n) andp0(n) continue to depend on a thresho

α(n) such thatp1(n) = 2[1 − F(α(n))] andp0(n) = 2[F(α(n)) − 1/2]. On the basis o
these equations, it is possible to derive expected payoffs and the expected value
game.

Derivation of Fig. 3. We plot the ex ante payoff of storable and non-storable vote
proportion of the expected efficient payoff, which we define as the expected payoff
decision were always resolved in favor of the size with larger total valuation (in abs
value).F(ν) is uniform. Consider for example the case of 2 voters. Then:

EU∗(2) = 1

2

1∫
0

ν

2
dν + 1

2

[ 1∫
0

( 1∫
νj

νi

2
dνi −

vj∫
0

νi

2
dνi

)
dνj

]
,

where the first integral captures expected payoff when both agree (note that a p
payoff is expected only if both voters have positive valuations) and the second whe
disagree, again taking into account that when the larger absolute valuation is negatid is
set to 0, and when it is positive, the voter with negative valuation suffers a loss.

The expected efficient payoff can be calculated in a similar manner for different
bers of voters, keeping in mind that the characteristic function of a sumw of n random
variables, each independently distributed uniformly over[0,1] is given by:

Pn(w) = 1
n∑

(−1)k
(

n
)

(w − k)n−1sgn(w − k).

2(n − 1)!

k=0
k
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We then derive, for arbitraryn:

EU∗(n + 1) =
(

1

2

)n+2

+
n−1∑
k=0

(
n

k

)(
1

2

)n+1

×
[

1

2

( k∫
0

Pn(w)dw −
n∫

k+1

Pn(w)dw

)
+

k+1∫
k

( 1∫
w−k

ν dν −
w−k∫
0

ν dν

)
Pn(w)dw

]
.

The expected efficient payoff has no temporal dimension: given that valuations ar
the expected efficient payoff in the 2-period game is simplyEU∗(n) + δEU∗(n).
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