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Abstract

We develop a framework to study the dynamics of vote trading over multiple binary issues. We prove

that there always exists a stable allocation of votes that is reachable in a finite number of trades,

for any number of voters and issues, any separable preference profile, and any restrictions on the

coalitions that may form. If at every step all blocking trades are chosen with positive probability,

convergence to a stable allocation occurs in finite time with probability one. If coalitions are

unrestricted, the outcome of vote trading must be Pareto optimal, but unless there are three voters

or two issues, it need not correspond to the Condorcet winner.
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1 Introduction

Exchanging one’s support of a proposal for someone else’s support of a different proposal is common

practice in group decision-making. Whether in small informal committees or in legislatures, com-

mon sense, anecdotes, and systematic evidence all suggest that vote trading is a routine component

of collective decisions.1 Vote trading is ubiquitous, and yet its theoretical properties are not well

understood. Efforts at a theory were numerous and enthusiastic in the 1960’s and 70’s but fizzled

and have almost entirely disappeared in the last 40 years. John Ferejohn’s words in 1974, towards

the end of this wave of research, remain true today: "[W]e really know very little theoretically

about vote trading. We cannot be sure about when it will occur, or how often, or what sort of

bargains will be made. We don’t know if it has any desirable normative or efficiency properties."

(Ferejohn, 1974, p. 25)

One reason for the lack of progress is that the problem is difficult: each vote trade occurs

without the equilibrating properties of a continuous price mechanism, causes externalities to allies

and opponents of the trading parties, and can trigger new profitable exchanges. As a subset of

voters trade votes on a set of proposals, the default outcomes of these proposals change in response

to the reallocation of votes, generating incentives for a new round of vote trades, which will again

change outcomes and open new trading possibilities. A second reason for the early difficulties is

that a consistent well-defined framework was missing. Most authors left unspecified some crucial

details of their models, used an array of different assumptions and terminology, at times implicit,

and never fully closed the loop between the definition of stability and the specification of the trading

rule. The first contribution of this paper is the development of a general theoretical framework for

analyzing vote trading as a sequential dynamic process.

The voting environment is comprised of an odd number of voters facing several binary proposals,

each of which will either pass or fail. Every committee member can be in favor or opposed to any

proposal. Preferences are represented by intensities over winning any individual proposal and are

additively separable across proposals, inducing for each voter an ordering over all possible outcomes

— i.e., all combinations of different proposals passing or failing.

An initial allocation of votes specifies how many votes each voter controls on each proposal.

After vote trades are concluded, each proposal is decided by majority rule: if, after trading, the

number of votes controlled by voters favoring a proposal exceed the number of votes controlled by

voters opposing a proposal, then the proposal passes; otherwise it fails.

Votes are tradable, in the sense of a barter market. A vote trade is a reallocation of votes

held by a subset, or coalition, of voters. Hence the dynamic process operates on the set of feasible

vote allocations, and the current state of the dynamic system corresponds to the current allocation

of votes. We specify a family of simple algorithms, called Pivot algorithms, according to which

trading evolves over time. Dynamic sequences of vote trades are executed by sequences of blocking

1An empirical literature in political science documents vote trading in legislatures. For example, Stratmann (1992)

provides evidence of vote trading in agricultural bills in the US Congress.

1



coalitions—subsets of voters who, given the allocation of votes, can reallocate votes among themselves

and reach a new outcome each of them strictly prefers to the pre-trade outcome. Both the coalition

and the trade are fully unconstrained: the coalition can be of any size, and each member can trade

as many votes as she wishes on as many proposals as desired; trades need not be one-to-one. The

only requirement is that all members of a blocking coalition must strictly gain from the trade. If the

initial vote allocation is not blocked by any coalition, it is stable, and there is no trade. However if

the allocation is blocked, it may be blocked by many different coalitions and many different trades.

An element of our family of algorithms is any rule selecting blocking coalitions and trades at each

blocked allocation. The trade produces a new allocation of votes, and the algorithm again selects

a blocking coalition and a trade. The algorithm continues until a vote allocation is reached from

which there are no improving trades for any coalition. Such vote allocation is called Pivot stable.

The approach delivers three main results, addressing some of the open questions left from the

older literature. Our first key result is a general existence theorem. The set of Pivot stable vote

allocations is non-empty. For any initial vote allocation, any number of voters or proposals, any

profile of preference rankings, any restrictions on feasible blocking coalitions, there always exists a

finite sequence of trades that ends at a stable allocation. The existence result does not rule out the

possibility that some selection rules may generate cycles. However, if every blocking trade is selected

with positive probability, then trade must converge to a Pivot stable vote allocation in finite time

with probability one. Furthermore, if trades are restricted to be pairwise and non-redundant—i.e., if

votes that do not affect outcomes are not traded — then trading converges to a stable allocation along

all possible sequences of blocking trades. Earlier conjectures (Riker and Brams, 1973; Ferejohn,

1974) speculated that vote trading could reach a stable allocation only under very strict conditions

on the number and types of trades, and in particular ruling out coalitional trades. Our results show

otherwise: a stable allocation is always reachable.

Every vote allocation produces an outcome, that is, a specific combination of proposals passing

or failing. Our second result concerns the optimality of Pivot stable allocations, and serves as a

welfare theorem to complement the existence theorem. Pivot stable vote allocations always generate

Pareto optimal outcomes if no restrictions are placed on the set of blocking coalitions. Together

with our existence result, we can then conclude that vote trading can always deliver a stable Pareto

optimal outcome.

The early literature was inspired in large part by a claim, stated explicitly in Buchanan and

Tullock (1962), that vote trading must lead to Pareto superior outcomes because it allows the

expression of voters’ intensity of preferences.2 The conjecture was rejected by Riker and Brams’

(1973) influential "paradox of vote trading" which showed that when trade is restricted to be pair-

wise, Pareto-inferior outcomes are possible. The belief that constraining trade to be pairwise was

necessary to achieve stability made the conclusion particularly important. Our result is consistent

with the Riker and Brams’ paradox because restrictions on the allowable set of blocking coalitions

2The claim originated in an early debate between Gordon Tullock and Anthony Downs (Tullock, 1959 and 1961,

Downs, 1957, 1961). See also Coleman (1966), Haefele (1971), Tullock (1970), and Wilson (1969).
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can lead to suboptimal allocations. But the general existence of Pareto optimal outcomes reached

via trade when coalitions are unconstrained leaves room for a more optimistic perspective.

A criterion more demanding than Pareto optimality is the correspondence between outcomes

generated by Pivot stable vote allocations and the Condorcet winner—the outcome that a majority

of voters prefer to any other—if it exists. We analyze such a correspondence, called Condorcet

consistency in the social choice literature3, in our third set of results. In general, Pivot trading is

not Condorcet consistent: even when the Condorcet winner exists, trading may lead to a stable

outcome that differs from the Condorcet winner. Special cases exist—e.g., if there are only three

voters, or two proposals—such that vote trading is guaranteed to deliver the Condorcet winner, but

the result does not hold more broadly. The connection between outcomes generated by Pivot stable

allocations and the Condorcet winner thus is tenuous: we know that the former always exist while

the latter typically does not, and even when the latter exists, vote trading need not deliver it.

The link between vote trading and the Condorcet winner was a central unresolved question

in the early literature. Buchanan and Tullock (1962) and Coleman (1966) conjectured that vote

trading offers the solution to majority cycles in the absence of a Condorcet winner, a belief we

find still expressed in popular writings on voting.4 Starting with Park (1967), a number of authors

studied and rejected the conjecture5, but the different scenarios and the incompletely specified

trading rules make comparisons difficult. Our existence result can be read as partially supporting

Buchanan and Tullock’s, and Coleman’s conjecture. But the connection is weak because the logic

in the older arguments seems quite different and, contrary to the implicit claims of all authors cited

above, existence of a Condorcet winner in general does not imply that it must be reached by vote

trading.

As our description makes clear, the object of our study is the trade of votes for votes within a

committee, in the absence of side-payments. Thus the model and the approach are quite different

from the rich literature analyzing the trade of votes in exchange for a numeraire, whether vote

buying by candidates or lobbyists (Myerson (1993), Groseclose and Snyder (1996), Dal Bo (2007),

Dekel et al. (2008, 2009)), or vote markets (Philipson and Snyder (1996), Casella et al. (2012),

Xefteris and Ziros (2017)), or auction-like mechanisms (Lalley and Weyl (2016), Goeree and Zhang

(2017)).

The lack of side-payments evokes instead the work on alternative voting rules that allow out-

comes to reflect intensity of preferences. The literature includes the storable votes mechanism of

Casella (2005), qualitative voting (Hortala-Vallve (2012)), and the linking mechanisms proposed

in Jackson and Sonnenschein (2007). There are however two major differences. First, in these

schemes voters can shift their own votes from one proposal to another, within the limits of a bud-

get constraint, but are not allowed to trade votes with other voters. Second, such mechanisms

3See Moulin (1988).
4“If logrolling is the norm, then the problem of the cyclical majority vanishes.” (Buchanan and Tullock, 1965 ed.,

p.336.). "When logrolling is allowed, the highest valued outcome is secure without the threat of a cyclical majority."

(https://en.wikipedia.org/wiki/Logrolling, accessed June 201, 2018)
5See also Bernholz (1973), Ferejohn (1974), Koehler (1975), Schwartz (1975), Kadane (1972), Miller (1977).
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are formulated as solutions to Bayesian collective decision problems, where preference intensity is

represented by von Neumann-Morgenstsern utility functions. The approach and solution concepts

are grounded in non-cooperative game theory and agents maximize expected utility. Neither fea-

ture applies to our analysis, where votes can be traded across voters but not across proposals, and

preferences representations that maintain ordinal rankings are fully interchangeable.

In terms of solution concepts, this paper is connected to work on dynamics and stability in

environments that do not allow side payments. We have in mind the problem of achieving stabil-

ity in sequential rounds of matching among different agents (Gale and Shapley, 1962; Roth and

Sotomayor, 1990; Roth and Vande Vate, 1990), in creating or deleting links in the formation of

networks (Jackson and Wolinsky, 1996; Watts, 2001; Jackson and Watts, 2002), or in sequences of

barter trades in an exchange economy without money (Feldman, 1973, 1974; Green, 1974). While

the substantive issues addressed in those paper are different from vote trading, the modeling of

dynamics and stability is similar in spirit to ours. In all of these cases, as in the approach we take

in this paper, the problem is studied by combining a definition of stability and a rule specifying

the dynamic process leading to stable outcomes.

In what follows, we begin by describing the general framework (Section 2). In Section 3, we

discuss the existence of stable vote allocations reachable via trading, and their properties—the

Pareto optimality of stable vote allocations and the relationship between stable outcomes and the

Condorcet winner. [Do we break up again Section 3 into existence and properties?]

Section 4 summarizes our conclusions and discusses possible directions of future research.

2 The model

Consider a committee C = {1  } of  (odd) voters who must approve or reject each of 

independent binary proposals. The set of proposals is denoted  = {1   }. Committee
members have separable preferences represented by a profile of values, , where  ∈ R is the value
attached by member  to the approval of proposal , or the utility  experiences if  passes. Value

 is positive if  is in favor of  and negative if  is opposed. The value of any proposal failing

is normalized to 0. We call  ≡ || voter ’s intensity on proposal . We specify the profile
of cardinal values  because working with such a profile will prove convenient and intuitive, but

our analysis relies only on individual ordinal rankings over the 2 possible outcomes (all possible

combinations of passing and failing for each proposal). Proposals are voted upon one-by-one, and

each proposal  is decided through simple majority voting.

Before voting takes place, committee members can trade votes. One can think of votes in our

model as if they were physical ballots, each one tagged by proposal. A vote trade is an exchange

of ballots, with no enforcement or credibility problem. After trading, a voter may own zero votes

over some proposals and several votes over others, but cannot hold negative votes on any issue.

We call  the votes held by voter  over proposal ,  = (
1
   


 ) the profile of votes held by 
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over all proposals, and  = (1    ) a vote allocation, i.e., a profile of vote holdings for all

voters and proposals. The initial vote allocation is denoted by 0 = (01  0 ). We impose no

restriction on 0, beyond 0 ≥ 0 for all   and, to avoid ties,
P

 

0 odd for all . Let V denote

the set of feasible vote allocations:  ∈ V ⇐⇒P 

 =

P
 


0 for all  and  ≥ 0 for all  .6

Definition 1 A trade is an ordered pair of vote allocations ( 0), such that  0 ∈ V and  6= 0.

That is, the trade ( 0) is a reallocation of votes from  to 0. Voter ’s net trade from ( 0)
is denoted ( 

0), where  ( 0) = 0 −  .

Given a feasible vote allocation , when voting takes place on proposal  each voter has a

dominant strategy to cast all her votes in favor of the proposal if her proposal’s value is positive

(  0), and against the proposal if her proposal’s value is negative (  0). We indicate by

P() ⊆  the set of proposals that receive at least (
P

 

0 + 1)2 favorable votes, and therefore

pass. We call P() the outcome of the vote if voting occurs at allocation . Finally, we define ()

as the utility of voter  if voting occurs at : () =
P

∈P() 

 . Preferences over outcomes are

assumed to be strict. That is, () = (
0) if and only if P() = P(0).7

Our focus is on the existence and properties of vote allocations that hold no incentives for

trading. Without loss of generality we will assume that there are no unanimous issues, i.e., there

is no issue  such that either   0 for all  or   0 for all .8 Consider any trade ( 0), and
let ∆

 ( 
0) = | ( 0)| denote the absolute change in vote holdings for individual  on proposal

. Denote ∆( 
0) =

P
=1∆


 ( 

0). We define:

Definition 2 Let  ⊆ C be a non-empty coalition. The trade ( 0) is a payoff-improving trade
for  if  ∈  ⇔ ∆( 

0)  0 and  ∈  ⇒ (
0)  ().

That is, a trade is called payoff-improving for  if only voters in , and all voters in , trade,

and every voter in  is strictly better off with the outcome that would result from the new vote

allocation. Coalition  can have any arbitrary size between 2 and  . We then say:

Definition 3 A coalition  ⊆ C blocks  if there exists a payoff-improving trade ( 0), for .
Call ( 0) a blocking trade.

We denote by () the set of all blocking trades at  — i.e. the set of all feasible payoff-improving

trades for all possible coalitions.

Definition 4 A vote allocation  ∈ V is stable if () = ∅.
6Note that


 


 6=


 


0 is feasible because we do not restrict trades to be one-to-one.

7For any , strictness is satisfied for all , except for a set of measure zero. Some of the examples considered later

in the paper allow voters to have weak preferences. This is done for expositional clarity only, and the examples are

easily modified to strict preferences.
8Exchanging votes on a unanimous issue can never change the outcome.

5



Our definition of stability thus coincides with the core: a vote allocation  ∈ V is stable if it
belongs in the core. Note that for any  , , and  the core is not empty: a feasible allocation

of votes where a single voter  holds a majority of votes on every issue is always in the core and

thus is trivially stable: no exchange of votes involving voter  can make  strictly better-off; and no

exchange of votes that does not involve voter  can make anyone else strictly better-off. Hence:

Proposition 1 A stable vote allocation  exists for all ,  , and .

2.1 Dynamic adjustment: Pivot algorithms.

Stable vote allocations exist, but are they reachable through sequential decentralized exchange? To

answer the question, we need to specify the dynamic process through which trades take place.

We posit a dynamic process characterized by sequences of trades yielding myopic strict gains

to all coalition members:

Definition 5 A Pivot algorithm is any mechanism generating a sequence of trades as follows:

Start from the initial vote allocation 0. If there is no blocking trade, stop. If there is one such trade,

execute it. If there are multiple such trades, execute one according to a choice rule . Continue in

this fashion until no further blocking trade exists.

The definition describes a family of algorithms, and individual algorithms differ in the specifi-

cation of the choice rule  that is applied when multiple blocking trades are possible. For example,

 may select each possible trade with equal probability; or give priority to trades with higher

total gains or involving fewer, or more numerous, or specific voters. Rule  can depend on the

current allocation or history of votes, and can be stochastic. Formally,  specifies a probability

distribution over (), for each vote allocation  such that () 6= ∅. For any () 6= ∅ and

for any ( 0) ∈ (), we denote by ( 0) ≥ 0 the probability that ( 0) is selected at ,
with

P
0∈()( 

0) = 1. Note that  selects a trade, hence both a coalition and a specific ex-

change of votes for that coalition, among all possible coalitions and vote exchanges that are strictly

payoff-improving for the voters involved in the trade.

Payoff improving trades are not restricted to two proposals only, nor to exchanging one vote

for one vote: a voter can trade her vote or bundles of votes on one or more issues, in exchange for

other voters’ vote or votes on one or more issues, or in fact in exchange for no other votes. The

only restriction we are imposing is that the trades be strictly payoff-improving for all traders. If a

trade is payoff improving, it is a legitimate trade under the Pivot algorithms.

The name Pivot algorithm comes from an observation due to Riker and Brams (1973): if a trade

is strictly payoff improving, it must alter the outcome of the vote; hence it must involve pivotal

votes. In the broad definition we are using here, not all traded votes need to be pivotal: as long

as some are, and the outcome is modified by the trade in a direction that benefits all members of

the trading coalition, redundant votes may be traded too. Redundant votes are votes whose trade
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does not affect the outcome: votes traded between voters on the same side of an issue, or votes

traded between voters on opposite sides, but not sufficient to change which side holds a majority.

Their trade is irrelevant to myopic payoffs but can affect the path of future trades by altering the

blocking possibilities of different future coalitions.

3 Pivot-stable vote allocations: Existence and Properties

Do Pivot algorithms converge to stable vote allocations? Stated differently, do sequential myopic

trades converge to the core? The question is not trivial because any Pivot trade changes default

outcomes and alters the existing set of blocking trades, potentially leading to new Pivot trades, in

a sequence that in principle could result in a perennial cycle.

3.1 Existence

We define:

Definition 6 An allocation of votes  is Pivot-stable if it is stable and reachable from 0 through

a Pivot algorithm in a finite number of steps.

The following result establishes the general existence of Pivot-stable vote allocations:

Theorem 1 A Pivot-stable allocation of votes exists for all 0, ,  , and .

Before presenting a formal proof of the theorem, it is useful to first explain the intuition with

an example.

Example 1. Consider the value matrix in Table 1: rows represent proposals, columns represent

voters, and the entry in each cell is  , the value attached by voter  to proposal  passing. (Recall

that the value of a failed proposal is normalized to zero for all voters.)

1 2 3 4 5

 2 −1 −2 1 1

 −1 2 1 −2 2

Table 1: Value matrix for Example 1.

Suppose 0 = {11 1}. At 0, proposals  and  both pass with a vote of 3 − 2: 1(0) =
2(0) = 1, 3(0) = 4(0) = −1, 5(0) = 3. Allocation 0 is not stable: it can be blocked by

voters 3 and 4. Voter 3 gives a  vote to 4, in exchange for an  vote, reaching a new vote allocation

1 = {{1 1} {1 1} {2 0} {0 2} {1 1}}. At 1 both proposals fail, and 3(1) = 4(1) = 0, a

strict payoff improvement for voters 3 and 4. Voters 3 and 4 have shifted votes away from a lower

7



value proposal each was, pre-trade, winning towards a higher value proposal each was losing. The

difference in values is the key to the payoff-improving nature of the trade. Vote allocation 1 is not

stable either. Voters 1 and 2 can block it: voter 1 can trade her  vote to 2 in exchange for an 

vote, reaching allocation 2 = {{2 0} {0 2} {2 0} {0 2} {1 1}}, such that both proposals pass,
and 1(2) = 2(2) = 1, a strict payoff improvement for 1 and 2 over allocation 1. Again, the

logic of the trade is a shift in votes from low-value proposals the voters were winning pre-trade to

higher value proposals the voters were losing. Allocation 2 is stable.

Over the sequence of trades, the voters’ myopic payoffs have moved non-monotonically, falling

and then rising for voters 1, 2, and 5, rising and then falling for voters 3 and 4. The changes

in payoffs reflect both the direct gains from the trades the voters themselves have executed and

the externalities caused by others’ trades. The number of votes held on each proposal, on the

other hand, is affected only by the trades a voter participates in. At each step of the process, we

can construct an index of the total potential value of each voter’s vote holdings, independently

of the voting outcome. Specifically, let this index be defined as the intensity-weighted sum of ’s

votes—here  

 +  


 , and call it ’s score at .

9

Voter ’s score does not change when  does not trade (by construction) and, at least in this

example, increases whenever  does trade: after the first trade, it rises from 3 to 4 for voters 3 and

4 (the two voters who trade); after the second trade, it rises, again from 3 to 4, for voters 1 and

2. The increases reflect the logic of the payoff-improving trades. But note that for each voter, the

index has a finite ceiling. In this example, the ceiling is 5( +  ), where 5 is the total number

of existing votes on each issue. Thus, if each voter’s score can only move monotonically upwards,

trade must end in finite time.

What complicates the proof of Theorem 1 is that, unfortunately, the simple monotonicity of

the example does not extend to the general case. If multiple votes are given away on the same

proposal, if trades involve more than two voters, if some of the votes traded are redundant, in all

of these cases traders in payoff-improving trades may see their scores decline. Consider Example 2:

Example 2. The value matrix is reported in Table 2. As before, rows represent proposals,

columns represent voters, and the entry in each cell is  , the value attached by voter  to proposal

 passing.

1 2 3

 5 −1 −1
 −4 2 −1

Table 2: An example where the only existing blocking trade causes a decline in score for voter 1.

Vote allocations are { {1,2},{1,0},{1,1} }

9One can see that separability is essential to the construction, as the score function is only well-defined with

separable preferences.
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At , voter 1 has one vote on  and two votes on ; voter 2 has one vote on  and zero votes

on , and voter 3 has one vote on each proposal. Without trade,  fails 2-1 and  fails 3-0. But

 is not stable: voters 1 and 2 are a blocking coalition. Voter 1 trades both of her  votes to

voter 2 in exchange for voter 2’s  vote; in the resulting allocation 0 both  and  pass 2-1, and

1(
0) = 2(

0) = 1, a strict improvement for both voters over 1() = 2() = 0. Nevertheless,

voter 1’s score falls from 13 to 10. There is no alternative trade that benefits all members of a

trading coalition, and thus there is no trade such that voter 1’s score does not fall.

It turns out, however, that the main intuition is robust. The simple fact that all voters taking

part in a trade must strictly gain from the trade is sufficient to guarantee that there always exists

a path of trades such that any voter’s score can decline at most a finite number of times. But then,

since the score is bounded, trade must end in finite time. The proof of Theorem 1 defines a general

algorithm for constructing such a path for arbitrary environments.

The proof proceeds in two steps. We begin by side-stepping the complication illustrated in

Example 2: Lemma 1 shows that if every blocking trade changes outcomes only on proposals that

win or lose by exactly one vote, then for every blocking coalition  and for every  ∈  there

always exists a blocking trade for  that is score-improving for . The second part of the proof

then expands the environment to arbitrary , allowing for blocking trades in which multiple votes

may be traded away.

Before describing the proof, two additional definitions are useful. First, the index used in

Example 1 should be defined formally:

Definition 7 Consider voter  and a vote allocation . Voter ’s score at  is given by:

() =

X
=1

 

 

Second, Lemma 1 applies to blocking trades on proposals decided by a single vote. This too

should be made precise.

Definition 8 Call 
+ the set of voters in favor of proposal , and 

− the set of voters against pro-
posal . We say that at  a proposal is decided by minimal majority if

¯̄̄P
∈

+
 −

P
∈

−


¯̄̄
=

1.

Lemma 1 Suppose that at  every blocking trade ( 0) changes outcomes only on proposals that
are decided by minimal majority at . Then for any  that blocks  and for any  ∈ , there exists

a blocking trade, ( 0), such that (0)  ().

Proof. The proof is constructive. If  is stable, there are no blocking trades. Suppose then that

 is not stable and there is at least one blocking coalition; if there is more than one, select any

blocking coalition . Because  is a blocking coalition at , there must exist at least one set of
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(two or more) proposals whose resolution is modified by a feasible payoff improving trade within

. If multiple sets of such proposals exist, select one. Call it e . Consider any voter  ∈ . Definee() = { ∈ e |  is on the winning side for  ∈ e post-trade and is on the losing side pre-trade}

and e () = { ∈ f |  is on the losing side for  ∈ e post-trade and is on the winning side pre-

trade}, and observe that e = e() ∪ e (), since, by selection of e , trade changes the resolution of
all proposals in e . Because  ∈ , it must be the case that  strictly gains from the trade overall.

Hence, even though the two sets, e()and e (), may have different cardinality, by definition of

improving trade,
P

∈ () 

 

P
∈  () 


 . Because all  ∈ e are decided by minimal majority

at , one can construct a blocking trade by reallocating a single vote within  on each  ∈ e ,
and leaving unchanged all vote holdings on the other proposals. Specifically, construct a trade such

that  receives one extra vote on all  ∈ e(), and gives away one vote on any   ∈ e ()such that

  0. But then

(
0)− () =

⎛⎝ X
∈ ()

 
0
 +

X
∈  ()

 
0


⎞⎠−
⎛⎝ X

∈ ()

 

 +

X
∈  ()

 



⎞⎠
≥

X
∈ ()

 −
X

∈  ()



 0

The score of voter  has increased.

An observation about this construction is key to understanding what follows. Voter , designated

as the recipient of a vote for each proposal in e() and, wherever possible, as the source of the

traded votes for proposals in e (), is chosen arbitrarily and can be any member of the blocking

coalition. The trade is constructed to guarantee that ’s score increases: for any arbitrary  ∈ ,

there exists a trade with such property.

Proof of Theorem 1. We construct an algorithm such that, starting at any initial vote allocation

0, for any ,  , and , there exists a finite sequence of blocking trades ending in a stable vote

allocation ∗.

At any step of the sequence with vote allocation , denote by b () the set of proposals that are
not decided by a minimal majority at , with | b ()| ≤ . There are three cases to consider. Case

0: there exists no blocking trade. Hence  is stable, and the theorem holds. Case 1: there exists

a blocking trade which changes the outcomes on some proposals that are not decided by minimal

majority at . Case 2: all blocking trades at  change only proposals that are decided by a minimal

majority at .

If we are in Case 1 at , there exists at least one blocking trade that includes exchanging

pivotal votes on a non-empty subset of b (). If there are multiple such trades, select one, and callbb the set of non-minimal majority proposals at  whose resolution is modified by the trade. Any
outcome achieved by a blocking trade involving

bb can always be replicated by a blocking trade,
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( 0), constructed so that at 0 all proposals in bb are decided by a minimal majority. Execute one
such trade. This reduces the number of proposals that are not decided by a minimal majority by

|bb |  0. Thus | b (0)|  | b ()|. At 0, again we can be in Case 0, Case 1, or Case 2.
If we are in Case 2 at , then there exists a blocking coalition and a blocking trade for that

coalition, ( 0), that only changes proposals decided by minimal majority at . If there are multiple
such coalitions, select one, and call it . Assign to each voter an index  ∈ {1  }, and define ∗
to be the unique voter in  with the property that ∗ ≤  for all  ∈ —that is, ∗ is the voter in 
with the lowest index. By Lemma 1 we can find a blocking trade for  such that ∗


(0)  ∗


(),

and such that the proposals involved in the trade continue to be decided by minimal majority at

0. Execute that trade. At 0, again we can be in Case 0, Case 1, or Case 2.

At any future step and vote allocation  proceed as above. The algorithm defines a sequence of

blocking trades, or ends trade if no blocking trade exists. We claim that this algorithm must end

after a finite number of trades.

The logic is as follows. First, because | b ()| ≤  ∞ and | b (0)|  | b ()| we can only be in
Case 1 a finite number of times in the sequence. Thus we only have to ensure that we can be in

Case 2 only a finite number of times. Consider voter 1. For voter 1, we know that whenever we are

in Case 2 at step , 1(
0)  1() if 1 ∈  because 1 = ∗ , and 1(

0) = 1() if 1 ∈ . Because

1’s score is a bounded function of , this implies that 1 can be in at most a finite number of Case 2

blocking trades. From above, we also know that 1 can be party to at most a finite number of Case

1 blocking trades. Hence there is a finite number of steps in the sequence that have a blocking

trade with a coalition that includes voter 1.

Next consider voter 2. For voter 2 we know that 2(
0)  2() whenever we are in Case 2 and

1 ∈  but 2 ∈  because 2 = ∗ . At any step of Case 2 where {1 2} ⊆ , 2’s score may possibly

decrease because 1 = ∗ , but this can happen only a finite number of times, because 1 can only
be in a finite number of blocking trades in the sequence. At any step of Case 2 where 2 ∈ , 2’s

vote holdings are unchanged, so 2’s score is unchanged. Because 2’s score is bounded above, this

implies that 2 can be in at most a finite number of Case 2 blocking trades. And, from above, we

also know that 2 can be involved in at most a finite number of Case 1 blocking trades. Hence there

is a finite number of steps in the sequence that have a blocking trade involving voter 2. Extending

the logic of this argument to voters with indices   2, it follows that every voter can be in at most

a finite number of blocking trades in the sequence. Because there is a finite number of voters, each

of whom can be involved in only a finite number of blocking trades in the sequence, the sequence

can only have a finite number of steps, and must end at a stable vote allocation. Hence the set of

Pivot stable allocations is non-empty.

The result holds broadly. The only condition we impose is that all members of a trading coalition

must strictly benefit (myopically) from the trade. We do not restrict the size of the coalition or the

number of proposals affected by vote trades; we do not require that trades be one-to-one or limited

to pivotal votes. And yet we find that there is always—for any number of voters and proposals,
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for any profile of separable preferences and any initial vote allocation—a path of payoff-improving

trades that leads to a stable vote allocation. Note that because the theorem holds for any arbitrary

selection of coalition , it holds, a fortiori, if we constrain allowable coalitions—for example if we

allow only pairwise trades or impose some cohesion requirement on . Any such constraint will

reduce the set of unstable vote allocations and strengthen the case for stability.

The theorem does not say that every trading path must converge to stability; rather, it says

that there always exists a trading path for which this is true. However, the existence of one such

path for any arbitrary starting allocation 0 allows us to identify a broad class of selection rules 

for which convergence to stability is guaranteed to occur in finite time. Call  the family of all

rules  such that, for all  ∈ V and for all ( 0) ∈ () ( 0)  0. That is,  is the family

of all stochastic selection rules  that put positive probability on any existing blocking trade. We

can then state:10

Corollary 1 If  ∈ , then for all 0, ,  , and , a Pivot-stable allocation of votes is reached

with probability 1 in finite time.

Proof. For any vote allocation , if  is stable, the result holds trivially; if not, denote by ()

the length of the shortest sequence of blocking trades, starting at  and ending at some stable vote

allocation ∗
()

. Let  = max∈V{()}, which we know exists because V is a finite set and a
stable vote allocation ∗ exists. Let  = min{( 0)|() 6= ∅ and ( 0) ∈ ()}  0, and let

 = (where  is a power). Suppose the initial vote allocation is 0. Then the probability that a

stable allocation is reached in a sequence of  or fewer trades from 0 is greater than or equal to

. Similarly the probability that a stable allocation is reached in a sequence of  or fewer trades

from 0 is greater than or equal to
P

=1(1− )−1 = 
1−(1−)
1−(1−) = 1− (1− ) → 1 as →∞.

No additional condition is required. As long as all trades have some chance of being selected,

the result holds: convergence to a stable allocation will occur in a finite number of steps.

3.2 Pairwise Trading

Theorem 1 and its corollary tell us that vote trading will lead to stability for a large class of

selection rules, in arbitrary environments. But can we identify conditions under which convergence

is guaranteed for all selection rules? Riker and Brams (1973) proposed a trading rule not unlike our

Pivot algorithms—payoff-improving, myopic, enforceable trades—and conjectured that convergence

to stability required limiting trades to be pairwise. Theorem 1 shows that the conjecture is incorrect.

And yet we show in this section that restricting trade to be pairwise can lead to a stronger result.

When complemented with one intuitive additional condition, pairwise trading leads to stability

along all trading paths.

10The intuition is similar to a well-known result in the matching literature: in marriage markets, random matching

algorithms will eventually lead to a stable match (Roth and Vande Vate 1990). Note however that our environment

is quite different, primarily because payoffs depend on the entire profile of vote allocations.
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1 2 3 4 5

 1 −2 2 1 −1
 −2 1 2 −1 1

 1 3 −1 −3 −1
 2 1 1 −2 −1

Table 3: Pairwise Pivot trades need not converge if redundant trades are possible. An example.

The additional condition excludes the trade of redundant votes—the gratuitous exchange of votes

that have no effect. Once again, it is required to preserve the monotonicity of the score function

along the path of trade. Consider the following example:

Example 3. Suppose 0 = {1 1}. There are four proposals and five voters, and the value
matrix is shown in Table 3:

At 0, proposals , and  pass; proposal  fails. All proposals pass or fail by minimal

majority. Consider the following sequence of pairwise Pivot trades. At 0, voter 1 gives one  vote

and one  vote to 2, in exchange for one  vote and one  vote. The trade is strictly payoff-

improving for both traders because it alters the majority direction on  and ; it does not alter

the voting tally on  and , on which 1 and 2 agree. At 1, proposal  passes and all others fail.

Voters 2 and 3 can block 1: voter 2 gives one  vote and one  vote to 3, in exchange for one

 and one  vote. The trade alters the majority on  and , and is payoff-improving for both

voters; it does not affect the resolution of  and , on which the two voters agree. At 2, ,

and  pass, and  fails. But 2 is not stable: voters 3 and 4 can trade and raise their myopic

payoff. Voter 3 gives one  vote and one  vote to 4, in exchange for one  and one  vote. The

majority changes on  and , but not on  and , on which the two voters agree. At 3, ,

and  pass, and  fails. But voters 1 and 4 can block 3: voter 1 gives one  and one  vote to

4, in exchange for one  and one  vote. The trade is strictly payoff-improving because it alters

the majority on  and  in the direction both traders prefer; it does not alter the majority on 

and , on which the two traders agree. This last trade, however, has brought the vote allocation

back to 0. The sequence of trades can then be repeated into a never ending cycle.

In Example 3, all Pivot trades are pairwise and all proposals, at any step on the path of trade,

are decided by minimal majority. Yet, it is readily verified that traders’ scores at times decrease,

and vote allocations cycle. The problem comes from vote trades on proposals on which the traders

agree. These redundant trades have no effect on payoffs, and thus a voter can trade away a vote on

a high value proposal for a vote on a lower value proposal: the trade has no effect, but the voter’s

score declines. The declines in score make cycles possible.

To guarantee convergence to a stable vote allocation, we need to rule out redundant trades.

What this means exactly is formalized in the following two definitions.

Definition 9 ( 00) is a reduction of ( 0) if  (00) =  (0), ∆
 ( 

0) = 0 ⇒ ∆
 ( 

00) = 0 for
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1 2 3 4 5 6 7

 2 −1 −1 −1 1 1 1

 −1 2 −1 −1 1 1 1

 −1 −1 2 −1 1 1 1

 −1 −1 −1 2 1 1 1

Table 4: Minimal Pivot trades need not converge if coalitional trades are possible. An example.

all  , and for all  , ∆
 ( 

0) ≥ 0⇒ ∆
 ( 

0) ≥ ∆
 ( 

00), with ∆
 ( 

0)  ∆
 ( 

00) for some
 .

Definition 10 Consider a blocking trade ( 0). We say that ( 0) is a minimal blocking trade if
there does not exist a reduction of ( 0).

Loosely speaking, minimality rules out two kinds of trades: if trade ( 0) does not change the
outcome of proposal , then no votes are traded on ; and if trade ( 0) does change the outcome
of proposal , then  is decided by minimal majority at 0. It is straightforward to show that if 
is not a stable allocation, then the set of minimal blocking trades is non-empty.

We can then state:

Theorem 2 If trades are restricted to be pairwise and minimal, then a Pivot-stable allocation of

votes exists for all 0, ,  , , and .

As in the case of Theorem 1, the proof builds on the score function. It shows that, in the

streamlined environment of Theorem 2, traders’ scores can decrease only if trade occurs on non-

minimal majority proposals. But by minimality, any such trade must bring the proposals to minimal

majority, and thus the number of trades on which scores can fall must be finite. Because the score

function is bounded and the number of voters is finite, it then follows that the number of trades

must be finite and bounded as well. And this must be true on any path of trade determined by

any choice rule . A formal proof is in Appendix A.

Example 3 shows that, without minimality, pairwise trade is not sufficient to guarantee con-

vergence to stability for all selection rules. But it is also the case that, without the restriction to

pairwise trading, minimality is not sufficient either. Consider the following example:

Example 4. Table 4 reports the value matrix. The initial vote allocation is 0 = {11 1}.
At 0, all proposals pass by minimal majority, and (0) = −1 for  = {1 2 3 4}. Consider

a coalition composed of such voters, and the following coalition trade: voter 1 gives her  vote

to voter 2, in exchange for 2’s  vote; voter 3 gives her  vote to voter 4, in exchange for 4’s 

vote. At 1, all proposals fail and (1) = 0 for all coalition members. For all, the trade is strictly

improving. The vote allocation 1 is not Pivot stable: voters 1 and 2 can block 1 by trading back

their respective votes on  and , reaching outcome P(2) = , and enjoying a strictly positive
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increase in payoffs: (2) = 1 for  = {1 2}. At 2, (2) = −2 for  = {3 4}, but 3 and 4
can block 2, trade back their votes on  and , and obtain a strict improvement in their payoff:

P(3) = , and (3) = −1 for  = {3 4}. The sequence of trades has generated a cycle:
3 = 0, an allocation that is blocked by coalition  = {1 2 3 4}, etc.. Hence for  that selects

the blocking coalitions in the order described, no Pivot stable allocation of votes can be reached.

We can rephrase the observation in terms of each voter’s score: although all trades are strictly

payoff-improving, the first coalition trade, from 0 to 1, lowers the score of all traders involved

from 5 to 4. The two successive trades raise the traders’ scores back to 5, one pair at a time, but

the initial decline makes a cycle possible.

Note that all trades in Example 4 are minimal. And yet, a decline in scores can accompany a

profitable trade because of the trading externalities present within the coalition: a coalition member

can engage in a vote exchange that by itself would not be profitable and that causes a decline in

score because she benefits from the other members’ trades. When trade is pairwise and minimal,

all trades must be advantageous to all active traders, and this cause of possible cycles is excluded.

We conclude this section with one final remark on the technique used to prove and illustrate our

results. We have relied repeatedly on the score function because it makes transparent the source of

the gain from blocking trades and the built-in ceiling in such possible gains and trades. The score

function is a cardinal measure of the potential value of voters’ vote holdings, but it is important

to stress that the reliance on a cardinal measure is for convenience only. The logic is fully ordinal:

changing all intensities  in any arbitrary fashion that preserves all ordinal rankings has no impact

on any of our results.

3.3 Properties of Pivot-stable outcomes

Following Theorem 1, a Pivot-stable vote allocation always exists. When trade comes to an end,

the outcome of the vote is realized. Do outcomes reached via vote trading possess desirable welfare

properties?

We define:

Definition 11 An outcome P() is a Pivot-stable outcome if  is a Pivot-stable vote allocation.

For any fixed ,  , and , we denote V∗ the set of all Pivot-stable vote allocations, and P(V∗)
the set of all stable outcomes reachable with positive probability through a Pivot algorithm. If

P(V∗) is a singleton, we use the notation P(V∗) to denote the unique element of P(V∗).11

We find:

Theorem 3 All Pivot-stable outcomes must be in the Pareto set, for all 0, ,  , and .

11Note that uniqueness of P(V∗) does not imply that V∗ is a singleton. There can be multiple Pivot-stable vote
allocations, all leading to the same outcome.
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Proof. We know from Theorem 1 that a Pivot-stable outcome exists. Regardless of the history of

previous trades, if the outcome is Pareto dominated, then the coalition of the whole can always reach

a Pareto superior outcome and has a profitable deviation. But then the allocation corresponding

to the Pareto-dominated outcome cannot be Pivot-stable.

If no restriction on coalition formation is imposed, all Pivot-stable outcomes must be Pareto

optimal. Coupled with Theorem 1, Theorem 3 teaches us that vote trading can always reach a

Pareto optimal outcome (contrary to earlier conjectures). But note that the result relies on being

able to form the coalition of the whole. Thus the result holds for any coalitional restriction that

does not interfere with the coalition of the whole, but does not hold if such coalition cannot form.

Riker and Brams’ (1973) "paradox of vote trading" is a well-known example where pairwise trades

only are possible, and the outcome they identify (which would be Pivot-stable if only pairwise

trades were allowed) is not Pareto optimal.12

A second property generally viewed as desirable in voting environments is the ability to reach

the Condorcet winner: the outcome that is preferred by a majority of voters to every other outcome.

The Condorcet winner need not exist, and a voting system is said to satisfy Condorcet consistency

if it uniquely selects the Condorcet winner whenever it does exist. Is Pivot stability Condorcet

consistent?13

Because the Condorcet winner implicitly assumes unweighted voting, in the remainder of this

section we restrict the analysis to environments where 0 = {1  1}. The main result is negative:
vote trading may lead to stable outcomes that differ from the Condorcet winner.

Proposition 2 If   2 and   3, there exist  such that P is the Condorcet winner but there

exists P0 6= P such that P0 ∈ P(V∗).

Proof. Consider the following environment with 0 = {1 1},  = 3 and  = 5:

1 2 3 4 5

 4 −7 1 −1 4

 1 1 −4 4 −1
 −3 4 2 −2 2

Table 5: Preference profile such that a Pivot-stable outcome is not the Condorcet winner.

For the preference profile in Table 5, P(0) =  is the Condorcet winner. Consider the

following set of trades. At 0, voter 2 gives a  vote to 3, in exchange for a  vote; at the new

vote allocation P(1) = . However 1 is not stable: it can be blocked by voters 4 and 5, trading

votes on  and  so that P(2) = . But 2 is again not stable: it can be blocked by 1 and 3,

12 It is also easy to construct cases in which a stable outcome reached via pairwise trade is in fact Pareto optimal.

The general point is that with pairwise trade Pareto optimality is not guaranteed.
13Utilitarian welfare criteria are not appropriate here because they depend on cardinal preferences, and thus can

vary for fixed ordinal rankings.
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trading votes on  and  so that P(3) = . Allocation 3 is stable, and thus  is a Pivot-stable

outcome along this path of trade. To see that 3 is stable, notice that no  votes can be traded

because voter 3 has a majority of  votes and ranks winning  higher than winning  and .

Thus at 3 the proposals on which trade can possibly occur are only two,  and , and the possible

outcomes are  (the outcome at 3) or . Voter 3 cannot trade votes away because she has 0 votes

on both  and . As for the other voters, either they do not want to trade because they prefer 

to  (voters 1, 4 and 5) or only hold losing votes and cannot trade (voter 2). Finally, note that

although a majority prefers  = P(0) to  = P(3), the no-trade allocation 0 is not stable.

The example can be generalized to an arbitrary number of voters and proposals. Maintaining

first  = 3, we can add to the example any even number of voters such that at 3 half of them

win on all proposals (i.e. prefer  to pass, and  and  to fail) and half of them lose on all

proposals (i.e. prefer  to fail, and  and  to pass). Adding such voters cannot induce any

further trade at 3. As long as their preferences are such that both types of voters rank 

above both outcome  and outcome ,  remains the Condorcet winner. And yet P(3) = 

remains Pivot stable. We can then extend the example to arbitrary   3 by adding proposals

such that for each additional proposal, 0, voters  = 1  − 1 are all in favor of 0 passing, and
furthermore 

0
   +  +   0 for  = 1   − 1. This guarantees that no trade involving

these additional proposals will take place, and P(3) =  remains Pivot-stable.

Pivot-stability not only fails to satisfy Condorcet consistency; by immediate extension, Proposi-

tion 2 implies that Pivot stability is inconsistent with any solution concept that is itself Condorcet

consistent.- i.e., that uniquely selects the Condorcet winner when it exists.

The negative result in Proposition 2 does not extend to the special cases of  = 2 or  = 3.

The two propositions below make this point. They are stated separately because the two results

stem from very different logic.

Proposition 3 If  = 3, then for all  and , if the Condorcet winner exists, P(V∗) is a singleton,
and is the Condorcet winner.

Proof. See Appendix A

Proposition 4 If  = 2, then for all  and , P(V∗) is a singleton and is the Condorcet winner,
if the Condorcet winner exists. If P(V∗) 6= P(0), a majority prefers P(V∗) to P(0).

Proof. See Appendix A.

With  = 3, the result follows immediately. From Park (1967) and Kadane (1972), we know

that the Condorcet winner, if it exists, must coincide with the no trade outcome. If  = 3, a

pair of voters constitutes a majority, and thus if 0 delivers the Condorcet winner it cannot be

blocked. But Proposition 4 does not follow as directly, because trade is indeed possible. Rather, its

proof highlights that in the case of two proposals, trading via the Pivot algorithm can reach only

two possible outcomes - the no trade outcome and its complement. This effectively partitions all
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voters into two groups, with opposite preferences between the no trade outcome and its complement.

Differences in preferences ranking over other outcomes within each of these two groups are irrelevant

because such outcomes are unreachable. Over reachable outcomes, preferences within each group

are perfectly aligned. The scenario thus effectively reduces to a contest between two alternatives,

the no trade outcome and its complement, whose resolution is fully determined by which side holds

more votes. In contrast, when there are more than two proposals all 2 possible outcomes are

reachable in principle, and it is not possible to partition the voters into two groups with opposite

preferences over exactly two reachable outcomes. Hence the logic of the proof of Proposition 4

breaks down for   2.

4 Conclusions

This paper proposes a general theoretical framework for studying vote trading in committees.

It starts from two essential features: (1) a notion of stability: a stable vote allocation is such

that no strict payoff improving vote trade exists; and (2) a class of vote trading algorithms—

Pivot algorithms—that define dynamic paths from initially unstable vote allocations to stable vote

allocations. The model has three key assumptions. First, proposals are binary and preferences are

separable across proposals: a voters’ preferred resolution of proposal  does not depend on the

resolution of proposal . Second, voting takes place proposal by proposal. Voters can trade votes

simultaneously on multiple proposals without constraint, but each vote is specialized by proposal.

Finally, as in the canonical model of economic exchange, each vote trade is a transfer of a property

right among the trading parties. Thus trades cannot be reversed unilaterally, and votes can be

re-traded.

The central finding of the paper is a general existence result: there always exists a sequence

of payoff-improving trades that leads to a stable vote allocation in finite time, from any initial

distribution of votes, for any number of voters and proposals, for any separable preferences, and

for any conditions on feasible trading coalitions. Furthermore, if all blocking trades are selected

with positive probability, then trading is guaranteed to converge to a stable vote allocation with

probability one.

In the absence of restrictions on feasible trading coalitions, outcomes corresponding to stable

vote allocations must be in the Pareto set, but in general there is no guarantee that trading will

result in the Condorcet winner when it exists.

The basic framework developed in this paper answers core questions of existence, Pareto opti-

mality, and Condorcet consistency. It is a building block that suggests a number of new directions

to pursue.

First, etc. It is natural to conjecture that the properties of vote trading might improve if

voters are not myopic and correctly anticipate the consequences of a trade they engage in, trade

which can trigger future trades by other voters. [Refer to working paper and summarize ] But
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farsighted vote trading does not lead to stronger results. In fact, existence is not guaranteed any

longer: farsightedly-stable vote allocations reachable from the initial vote allocation need not exist.

If such an allocation does exist, it need not include the Condorcet winner, even in special scenarios

in which the Condorcet winner is always reached under myopia. Furthermore, we find that active

vote trading, farsightedness, and the achievement of the Condorcet winner are incompatible. That

is, if voters are farsighted, the Condorcet winner can be the farsighted outcome only if the pre-trade

vote allocation is farsightedly stable and no vote trading takes place.

Then discuss other possible extensions (but cut).

One potentially productive extension is to committees that operate under voting rules other than

simple majority, with veto players or supermajority requirements. Our framework can be modified

to allow for general voting rules. A voting rule is a mapping that assigns a unique outcome (a subset

of passing proposals) to each vote allocation, :  → 2. In such a representation, majority rule

is defined by:  ∈ ()⇐⇒ P
{| 0} 


 −

P
{| 0} 


  0 A qualified majority rule requires the

difference between yes votes and no votes to be greater than or equal to some threshold ∆  0. The

presence of veto players can also be represented as a  function. Other formal parts of the theory,

such as the definitions of blocking coalitions, blocking trades, stability, Pivot algorithms, and so

forth are unchanged, although different voting rules will imply different blocking trades. Thus, vote

allocations that are stable or reachable through a sequence of blocking trades will generally depend

on . An analysis of vote trading under different voting rules could improve our understanding of

how different voting rules may lead to more or less vote trading, and how voting rules affect the

normative properties of the stable allocations that are reached through trading.

A second, related extension would consider different restrictions on the vote trading process.

Restrictions could take different forms. They could be embodied in the contract through which votes

are exchanged, for example limiting the extent of re-trading to which a vote is subject. In our

model, once traded, a vote can be traded further by its now owner without any residual control left

to the original owner. If vote trading takes the form of cooperative agreements, re-trading may be

problematic even if the original agreement were enforceable. Because proposals are binary in our

model, one-step re-trading is equivalent to releasing a former trading partner from her commitment,

but longer chains may well be difficult to execute. Whether restrictions on re-trading would favor

or hamper convergence to stability is an open question.

Alternatively, restrictions could be imposed on the coalitions that can organize vote trades. We

have studied explicitly two possibilities only: unlimited coalitional trading (i.e., no restriction at all

on the coalitions that can organize a trade), and, for some additional results, pairwise trading (i.e.,

any coalition of exactly two voters). But in some committees or legislatures, norms or party ties

may limit which coalitions can form. For example, in some cases it is difficult to engage in vote

trades that cross ideological or party lines. In other cases, the leadership within the committee may

play a key role in negotiating and enforcing agreements. As noted above, restricting coalitions will

not affect the main existence theorem, because restrictions makes blocking more difficult, but could

affect the properties of Pivot stable outcomes.
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A third possible direction concerns agenda setting and agenda manipulation. In the model stud-

ied in this paper, the set of binary issues is assumed to be exogenously given, and stable outcomes

are determined by the profile of voters’ ordinal rankings over the outcomes. In practice, the pro-

posals up for vote are typically the outcome of an agenda formation process. One can imagine

different ways to introduce such a process into the model. In one such approach, an agenda setter

or committee chair may have the power to bundle proposals. Alternatively, the committee may col-

lectively decide, through a voting process, how to bundle a large number of proposals into a smaller

number of proposals. Our results suggest that reducing the number of effective proposals—reducing

the number of possible trades—may in some circumstances be beneficial. Agenda setting in the form

of bundling introduces a different perspective on modeling logrolling in committees. Considering the

agenda formation process would move the analysis in the direction of bargaining models of legisla-

tive decision making (Baron and Ferejohn (1989)) suggesting a non-cooperative game approach, in

contrast to the stability approach pursued here.

Finally, a different but important question is how to incorporate uncertainty in the model. Our

framework has no formal inclusion of uncertainty. In a companion paper (Casella and Palfrey,

2016), we report findings from an experiment that reproduces the framework studied here, but where

trades are proposed and executed by subjects, as opposed to being ruled by an algorithm. We find

some hoarding of votes on high value proposals, perhaps as a hedge against adverse vote trading

by others. Subjects seem sensitive to the strategic uncertainty they face: it is difficult to predict

future vote trades that might be triggered by a current vote trade. The presence of such "vague"

uncertainty suggests that ambiguity might also play a role. More traditional modeling of uncertainty

using a Bayesian game approach could also be explored, incorporating private information either

about one’s own preferences or about an unknown state of the world that affects everyone’s welfare,

as in Condorcet jury models.
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Appendix A. Proofs

Theorem 2. If trades are restricted to be pairwise and minimal, then a Pivot-stable allocation of

votes exists for all 0, ,  , , and .

Proof. We begin by supposing, as in Lemma 1, that at some  all blocking trades involve only

proposals that are decided by minimal majority. Then, by minimality of the trades no more than

one vote is ever traded on any given proposal (although trades could involve bundles of proposals).

If  does not trade, then (
0) = (), by construction. If  does trade, recall the notation used

on the proof of Lemma 1 and call e the set of proposals on which  trades, e () the subset 

wins pre-trade and loses post-trade, and e() the subset  loses per-trade and wins post-trade.

By minimality, the resolution of all proposals on which votes are traded must change. Hencee () ∪ e() = e . Although the two sets may have different cardinality, by definition of pairwise
improving trade,

P
∈  () 


 

P
∈ () 


 . Since a single vote is traded on each proposal, we

have:

(
0)− () =

⎛⎝ X
∈ ()

 
0
 +

X
∈  ()

 
0


⎞⎠−
⎛⎝ X

∈ ()

 

 +

X
∈  ()

 



⎞⎠
≥

X
∈ ()

 −
X

∈  ()



 0

The score of voter  has increased.

Hence if  trades, (
0)  (). At any future step, either there is no trade and the Pivot-

stable allocation has been reached, or there is trade, and thus there are two voters  and  whose

score increases. The scores of all voters executing pairwise minimal trades on proposals decided by

minimal majority must increase.

Suppose now that at  some blocking minimal trades involve proposals that are not decided by

minimal majority. Call the set of such proposals b (). On such proposals, no single vote is pivotal,
and hence trades must concern more than one vote. As a result, although

P
∈  () 


 

P
∈ () 




must continue to hold by definition of payoff-improving trade, (
0)  () is possible (as in

Example 2 in the text). But, by minimality, all proposals on which votes are traded must be

decided by minimal majority after trade. Hence | b (0)|  | b ()|, and since | b ()| ≤   ∞,
blocking trades on non-minimal majority proposals can happen at most a finite number of times.

Hence the logic of the proof of Theorem 1 applies here as well: for any , the number of trades on

non-minimal majority proposals must be finite, and because score functions are bounded and the

number of voters is finite, so must be the number of trades on minimal majority proposals. Hence

trading always ends after a finite number of steps, and a Pivot-stable allocation of votes always

exists. Because the argument in the proof makes no restriction on , the result holds for all .
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To prove Propositions 3 and 4, we exploit a result from the literature14, restated in the following

Lemma.

Lemma . For any ,  , and , the Condorcet winner, if it exists, can only be P(0).

Proof. On any single proposal, the majority of the votes at 0 reflect the preferences of the majority

of the voters. For any number of proposals ∈ {1 }, consider the outcomeP(0−) obtained
by deciding  proposals in the direction favored by the minority at 0, and the remainder − in

the direction favored by the majority. Consider the alternative outcome P(0 (− 1)−), obtained
by deciding one fewer proposal in favor of the minority at 0. By construction, P(0 ( − 1)−)
must be majority-preferred to P(0

−). Hence for any  ∈ {1 }, P(0−) cannot be the
Condorcet winner. But by varying  between 1 and , P(0

−) spans all possible P 6= P(0).
Hence if the Condorcet winner exists, it can only be P(0).

Proposition 3. If  = 3, then for all  and , if the Condorcet winner exists, P(V∗) is a
singleton, and is the Condorcet winner.

Proof. By Lemma 4, if the Condorcet winner exists, it can only be P(0). But then with  = 3

no trade can take place: if the Condorcet winner exists, 0 cannot be blocked. Thus P(V∗) equals
P(0) and is the Condorcet winner.

Proposition 4. If  = 2, then for all  and , P(V∗) is a singleton and is the Condorcet
winner, if the Condorcet winner exists. If P(V∗) 6= P(0), a majority prefers P(V∗) to P(0).
Proof. Suppose, with no loss of generality, that P(0) = —both proposals pass. All members of

a blocking coalition must strictly gain from the trade. Hence any blocking trade must be such that

both proposals change direction, because pivotal voters trading away their vote on one proposal

must be compensated by moving to a winning position on the other proposal. It follows that along

any path of trades the only two possible outcomes are , at  = 0 2 4 , and ∅—both proposals

fail—at  = 1 3 5 . We know from Theorem 1 that P(V∗) is not empty. Hence P(V∗) ⊆ {∅}.
Partition all voters into two sets of voters  and ∅ where  ∈  ⇐⇒  Â ∅, that is, 

is composed of all voters who prefer  to ∅; and  ∈ ∅ ⇐⇒ ∅ Â , that is, ∅ is composed

of all voters who prefer ∅ to .15 The two sets have cardinality  and ∅, respectively. Note

that blocking coalitions can only be formed within each set: for any path of trade, all members of

a blocking coalition at  even must belong to ∅, and at  odd must belong to . Suppose first

  ∅. Then at 0,  holds a total of  on each proposal, and ∅ a total of ∅ votes,

again on each proposal. Since   ∅, on each proposal voters in  initially hold more votes

than voters in ∅. Since blocking trades must always take place within either  and ∅, this

relation is true at every step of the trading path. But then ∅ cannot be a Pivot-stable outcome,

because at any vote allocation  where P() = ∅, ∅ is blocked by .

To see this, notice that because P(0) =  and   ∅ it cannot be the case that all

14See Park (1967) and Kadane (1972).
15Ordering outcomes from most to least preferred,  includes voters with rankings

{{∅},{∅},{∅ },{∅ }}; ∅ includes voters with rankings

{{∅ },{∅ },{∅ },{∅ }}.
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1 2 3 4 5

 2 −2 −1 1 −1
 1 −1 −2 2 2

 ∅ ∅  

    

    ∅
∅   ∅ 

Table 6: No vote allocation is farsightedly stable relative to 0. An example.

voters in  prefer ∅ to  or  would have failed at 0. Similarly, it cannot be the case that all

voters in  prefer ∅ to  Thus there must be at least one voter in  who prefers  to ∅ and

at least one voter in  who prefers  to ∅. It follows that  can always block  by giving all

of its  votes to a voter in  who prefers  to ∅ and giving all of its  votes to a voter in 

who prefers  to ∅. Because such a blocking trade is always possible, at any  reachable from 0,

it then follows that P(V∗) = {}. Identical logic shows that if   ∅, then P(V∗) = {∅}.
Because  is odd,  = ∅ is impossible. Thus P(V∗) must always be a singleton.

By Lemma 4, only  can be the Condorcet winner. Because P(0) = , it must be the case

that  is majority preferred to both  and , and is the Condorcet winner if it is also majority

preferred to ∅, i.e. if   ∅. But we just established that if   ∅, P(V∗) = . Hence

if the Condorcet winner exists, P(V∗) is the Condorcet winner. If   ∅, the Condorcet winner

does not exist. In such a case, P(V∗) = ∅, and, since   ∅, P(V∗) is majority preferred to
P(0), concluding the proof of the proposition.

Theorem ??. There exist ,  , and  such that no vote allocation is farsightedly stable

relative to 0.

Proof.

Consider the environment displayed in Table 6. The lower panel reports, in the column corre-

sponding to each voter, the voter’s ordinal preferences over the four possible outcomes. An outcome

in a cell is strictly preferred by that voter to all outcomes in lower cells.

Note that P(0) = . The proof is in two steps. We first show that there is a unique vote

allocation  that F-dominates 0, and  must be such that P() = . We then show that  ∈ V∗ .
(1). By definition of (0), any  ∈ (0) must be such that P() 6= . (i) Suppose there

exists some 0 ∈ (0) such that P(
0) = . Outcome  is the least preferred alternative for

voters 2 and 3, so those two voters never trade as part of an F-chain to 0. Voter 5 ranks P(0) = 

above ; hence will not trade at 0. Therefore, at 0, on an F-chain to 
0 such that P(0) = ,

the only possible first trade is between voters 1 and 4. But 1 and 4 have identical preferences, and

no trade between them can change the outcome. Hence no trade between them can advance the

F-chain: there cannot exist a 0 ∈ (0) such that P(
0) = . (ii) Similarly, there cannot exist a
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0 ∈ (0) such that P(
0) = ∅: the voters’ preference rankings are such that only voters 2 and 3

can trade at 0 on an F-chain to any 
0 such that P(0) = ∅. But 2 and 3 have identical preferences

and cannot advance the F-chain. (iii) Is there some 0 ∈ (0) such that P(
0) = ? Voter 5 never

trades on such an F-chain. At 0, on an F-chain to 
0 such that P(0) = , the only possible first

trade is between voters 1 and 3. They disagree on both proposals, and thus by trading can reach

any outcome. They can trade to any of the eight vote allocations shown below (where the number

in each cell indicates the number of votes 1 and 3 hold after the trade; all other voters hold one

vote):

1 3

 1 1

 2 0

1 3

0 2

1 1

1 3

0 2

2 0

1 3

2 0

2 0

1 3

2 0

1 1

1 3

0 2

0 2

1 3

1 1

0 2

1 3

2 0

0 2

The first three of these vote allocations do not change the outcome, and thus cannot advance

the F-chain.

The next two change the outcome to . If either of these trades occur at 0, then the only

subsequent trade from either of these two vote allocations on an F-chain to 0 such that P(0) = ,

can only have 2 and 3 trading (because they are the only two voters who prefer  to ; but 2

and 3 both have negative values for both proposals and therefore cannot advance the F-chain.

The next two possible vote trades between 1 and 3 will lead to the ∅ outcome. On an F-chain

to 0 such that P(0) =  only 1 and 4 can gain from moving from ∅ to ; but 1 and 4 both have

positive values for both proposals and therefore cannot advance the F-chain.

Finally, consider the last possible vote allocation, which results when 1 trades her  vote for

3’s  vote, leading to the outcome . Call this vote allocation 0, since 0 ∈ (0) and P(
0) = .

Because we have ruled out all other possible allocations, (0) is a singleton: (0) = {0}.
(2). But 0 ∈ V∗ : at 0 voter 2 can give a  vote to voter 4, in exchange for an  vote, and

reach the vote allocation 00 depicted in Table 7, with P(00) = . Both 2 and 4 prefer the outcome

 to . The reasoning shows that 0 is not myopically stable, and therefore is not in the F-core.

1 2 3 4 5

 2 2 0 0 1

 0 0 2 2 1

Table 7: The vote allocation at 00.

We have shown that 0 ∈ V∗ , since there exists 0 ∈ (0), and that all  ∈ (0) are such that

 ∈ V∗ , since (0) = {0} and 0 ∈ V∗ . Hence the set (0) ∩ V∗ is empty: no vote allocation is
farsightedly stable relative to 0.

Proposition 5 If the Condorcet winner is an 0-stable outcome, then: (1) the Condorcet winner

is the only F0-stable outcome; (2) the set of F0-stable vote allocations V∗ (0) is a singleton, and
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V∗ (0) = {0}.

Proof. Call V the set of Condorcet vote allocations. That is,  ∈ V ⇒ P() is the Condorcet

winner. Suppose  ∈ V ∩ V∗ (0). Notice that if P0() = P(0), then  ∈ (0). By Lemma 4,

0 ∈ V . Thus if  ∈ V ∩ V∗ (0), it follows that  = 0, and 0 ∈ V∗ (0) because no voter is
better off at  than at 0. Suppose there exists some other 

0 ∈ V such that 0 ∈ V∗ (0). Then
0 ∈ (0). But then, there exists a vote allocation, 

0 that dominates 0 and is not dominated
by any other, since 0 ∈ V∗ (0). Hence 0 ∈ V∗ (0), a contradiction. Hence it follows that

V∗ (0) = {0}.
In words: We know from Lemma 4 that if the Condorcet winner exists it must equal P(0). It

then follows immediately that no other vote allocation yielding the Condorcet winner can farsight-

edly dominate 0, and thus if an 0-stable allocation yielding the Condorcet winner exists, it must

equal 0. But if 0 is F0-stable, no other allocation reachable from 0 can be F0-stable, because it

would have to dominate 0, and thus 0 could not be F0-stable. It follows that the set of F0-stable

equilibria must be a singleton and equal 0.

The following Corollary is immediate:

Corollary 2 The Condorcet winner can be an 0—stable outcome only if no vote trading takes

place.
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