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Abstract

We develop a framework to study the dynamics of vote trading over multiple binary issues. We prove
that there always exists a stable allocation of votes that is reachable in a finite number of trades,
for any number of voters and issues, any separable preference profile, and any restrictions on the
coalitions that may form. If at every step all blocking trades are chosen with positive probability,
convergence to a stable allocation occurs in finite time with probability one. If coalitions are
unrestricted, the outcome of vote trading must be Pareto optimal, but unless there are three voters
or two issues, it need not correspond to the Condorcet winner. If trading is farsighted, a non-empty
set of stable vote allocations reachable from a starting vote allocation need not exist, and if it does
exist it need not include the Condorcet winner, even in the case of two issues.
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1 Introduction

Exchanging one’s support of a proposal for someone else’s support of a different proposal is common

practice in group decision-making. Whether in small informal committees or in legislatures, com-

mon sense, anecdotes, and systematic evidence all suggest that vote trading is a routine component

of collective decisions.1 Vote trading is ubiquitous, and yet its theoretical properties are not well

understood. Efforts at a theory were numerous and enthusiastic in the 1960’s and 70’s but fizzled

and have almost entirely disappeared in the last 40 years. John Ferejohn’s words in 1974, towards

the end of this wave of research, remain true today: ”[W]e really know very little theoretically

about vote trading. We cannot be sure about when it will occur, or how often, or what sort of

bargains will be made. We don’t know if it has any desirable normative or efficiency properties.”

(Ferejohn, 1974, p. 25)

One reason for the lack of progress is that the problem is difficult: each vote trade occurs

without the equilibrating properties of a continuous price mechanism, causes externalities to allies

and opponents of the trading parties, and can trigger new profitable exchanges. As a subset of

voters trade votes on a set of proposals, the default outcomes of these proposals change in response

to the reallocation of votes, generating incentives for a new round of vote trades, which will again

change outcomes and open new trading possibilities. A second reason for the early difficulties is

that a consistent well-defined framework was missing. Most authors left unspecified some crucial

details of their models, used an array of different assumptions and terminology, at times implicit,

and never fully closed the loop between the definition of stability and the specification of the trading

rule. The first contribution of this paper is the development of a general theoretical framework for

analyzing vote trading as a sequential dynamic process.

The voting environment is comprised of an odd number of voters facing several binary proposals,

each of which will either pass or fail. Every committee member can be in favor or opposed to any

proposal. Preferences are represented by intensities over winning any individual proposal and are

additively separable across proposals, inducing for each voter an ordering over all possible outcomes

– i.e., all combinations of different proposals passing or failing.

An initial allocation of votes specifies how many votes each voter controls on each proposal.

After vote trades are concluded, each proposal is decided by majority rule: if, after trading, the

number of votes controlled by voters favoring a proposal exceed the number of votes controlled by

voters opposing a proposal, then the proposal passes; otherwise it fails.

Votes are tradable, in the sense of a barter market. A vote trade is a reallocation of votes

held by a subset, or coalition, of voters. Hence the dynamic process operates on the set of feasible

vote allocations, and the current state of the dynamic system corresponds to the current allocation

of votes. We specify a family of simple algorithms, called Pivot algorithms, according to which

trading evolves over time. Dynamic sequences of vote trades are executed by sequences of blocking

1An empirical literature in political science documents vote trading in legislatures. For example, Stratmann (1992)
provides evidence of vote trading in agricultural bills in the US Congress.
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coalitions–subsets of voters who, given the allocation of votes, can reallocate votes among themselves

and reach a new outcome each of them strictly prefers to the pre-trade outcome. Both the coalition

and the trade are fully unconstrained: the coalition can be of any size, and each member can trade

as many votes as she wishes on as many proposals as desired; trades need not be one-to-one. The

only requirement is that all members of a blocking coalition must strictly gain from the trade. If the

initial vote allocation is not blocked by any coalition, it is stable, and there is no trade. However if

the allocation is blocked, it may be blocked by many different coalitions and many different trades.

An element of our family of algorithms is any rule selecting blocking coalitions and trades at each

blocked allocation. The trade produces a new allocation of votes, and the algorithm again selects

a blocking coalition and a trade. The algorithm continues until a vote allocation is reached from

which there are no improving trades for any coalition. Such vote allocation is called Pivot stable.

The approach delivers four main results, addressing some of the open questions left from the

older literature. Our first key result is a general existence theorem. The set of Pivot stable vote

allocations is non-empty. For any initial vote allocation, any number of voters or proposals, any

profile of preference rankings, any restrictions on feasible blocking coalitions, there always exists

a finite sequence of trades that ends at a stable allocation. The existence result does not rule

out the possibility that some selection rules may generate cycles. However, if every blocking trade

is selected with positive probability, then trade must converge to a Pivot stable vote allocation

in finite time with probability one. Furthermore, if trades are restricted to be pairwise and non-

redundant–i.e., if votes that do not affect outcomes are not traded – then trading converges to

a stable allocation along all possible sequences of blocking trades. Earlier conjectures (Riker and

Brams, 1973; Ferejohn, 1974) speculated that vote trading could reach a stable allocation only under

very strict conditions on the number and types of trades, and in particular ruling out coalitional

trades. Our results show otherwise: a stable allocation is always reachable.

Every vote allocation produces an outcome, that is, a specific combination of proposals passing

or failing. Our second result concerns the optimality of Pivot stable allocations, and serves as a

welfare theorem to complement the existence theorem. Pivot stable vote allocations always generate

Pareto optimal outcomes if no restrictions are placed on the set of blocking coalitions. Together

with our existence result, we can then conclude that vote trading can always deliver a stable Pareto

optimal outcome.

The early literature was inspired in large part by a claim, stated explicitly in Buchanan and

Tullock (1962), that vote trading must lead to Pareto superior outcomes because it allows the

expression of voters’ intensity of preferences.2 The conjecture was rejected by Riker and Brams’

(1973) influential ”paradox of vote trading” which showed that when trade is restricted to be pair-

wise, Pareto-inferior outcomes are possible. The belief that constraining trade to be pairwise was

necessary to achieve stability made the conclusion particularly important. Our result is consistent

with the Riker and Brams’ paradox because restrictions on the allowable set of blocking coalitions

2The claim originated in an early debate between Gordon Tullock and Anthony Downs (Tullock, 1959 and 1961,
Downs, 1957, 1961). See also Coleman (1966), Haefele (1971), Tullock (1970), and Wilson (1969).
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can lead to suboptimal allocations. But the general existence of Pareto optimal outcomes reached

via trade when coalitions are unconstrained leaves room for a more optimistic perspective.

A criterion more demanding than Pareto optimality is the correspondence between outcomes

generated by Pivot stable vote allocations and the Condorcet winner–the outcome that a majority

of voters prefer to any other–if it exists. We analyze such a correspondence, called Condorcet

consistency in the social choice literature3, in our third set of results. In general, Pivot trading is

not Condorcet consistent: even when the Condorcet winner exists, trading may lead to a stable

outcome that differs from the Condorcet winner. Special cases exist–e.g., if there are only three

voters, or two proposals–such that vote trading is guaranteed to deliver the Condorcet winner, but

the result does not hold more broadly. The connection between outcomes generated by Pivot stable

allocations and the Condorcet winner thus is tenuous: we know that the former always exist while

the latter typically does not, and even when the latter exists, vote trading need not deliver it.

The link between vote trading and the Condorcet winner was a central unresolved question

in the early literature. Buchanan and Tullock (1962) and Coleman (1966) conjectured that vote

trading offers the solution to majority cycles in the absence of a Condorcet winner, a belief we

find still expressed in popular writings on voting.4 Starting with Park (1967), a number of authors

studied and rejected the conjecture5, but the different scenarios and the incompletely specified

trading rules make comparisons difficult. Our existence result can be read as partially supporting

Buchanan and Tullock’s, and Coleman’s conjecture. But the connection is weak because the logic

in the older arguments seems quite different and, contrary to the implicit claims of all authors cited

above, existence of a Condorcet winner in general does not imply that it must be reached by vote

trading.

Implicitly, these authors relied on not-fully enforceable trades and on some measure of forward-

looking behavior: the argument was that trades leading to outcomes deemed inferior by the majority

of voters would not be executed because the majority would then reverse them. In the second part

of the paper, we maintain the assumption of enforceable trades, but add farsightedness to our

model and allow voters to take into account the future path of trades. The myopic algorithms

described earlier become farsighted chains: blocking coalitions compare the vote allocation at the

moment of their trade not to the allocation resulting from their trade (as under myopia) but to

the allocation reached at the end of the chain (if such an end exists), forecasting the full path of

trade. The notion of stability is then correspondingly farsighted: an allocation is farsightedly-stable

(F-stable) if there is no farsighted chain leading away from it. While we use a different definition of

farsighted stability, our analysis echoes recent approaches in cooperative game theory that explore

the implications of forward looking sophistication (Chwe (1994), Dutta and Vohra (2015), Ray and

3See Moulin (1988).
4“If logrolling is the norm, then the problem of the cyclical majority vanishes.” (Buchanan and Tullock, 1965 ed.,

p.336.). ”When logrolling is allowed, the highest valued outcome is secure without the threat of a cyclical majority.”
(https://en.wikipedia.org/wiki/Logrolling, accessed June 201, 2018)

5See also Bernholz (1973), Ferejohn (1974), Koehler (1975), Schwartz (1975), Kadane (1972), Miller (1977).
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Vohra (2015)).6

Our fourth set of results thus concerns the existence and properties of F-stable vote allocations

and outcomes reached via farsighted chains from a given initial vote allocation. We find that

farsightedness does not lead to better properties for vote trading. While F-stable vote allocations

always exist, reaching one via vote trading may be impossible: farsightedness undoes the general

existence result obtained under myopia. It remains true that if an F-stable vote allocation is reached

and coalitions are unconstrained, the corresponding outcome must be Pareto optimal, but the

comparison to the Condorcet winner becomes still more problematic. Farsightedness, vote trading,

and the Condorcet winner are incompatible: achieving the Condorcet winner is possible only if no

vote trading occurs. It is easy to construct examples where starting from a vote allocation that

delivers the Condorcet winner, farsighted trade leads to a different outcome, even in environments

in which the Condorcet winner is always reached under myopic trading.

As our description makes clear, the object of our study is the trade of votes for votes within a

committee, in the absence of side-payments. Thus the model and the approach are quite different

from the rich literature analyzing the trade of votes in exchange for a numeraire, whether vote

buying by candidates or lobbyists (Myerson (1993), Groseclose and Snyder (1996), Dal Bo (2007),

Dekel et al. (2008, 2009)), or vote markets (Philipson and Snyder (1996), Casella et al. (2012),

Xefteris and Ziros (2017)), or auction-like mechanisms (Lalley and Weyl (2016), Goeree and Zhang

(2017)).

The lack of side-payments evokes instead the work on alternative voting rules that allow out-

comes to reflect intensity of preferences. The literature includes the storable votes mechanism of

Casella (2005), qualitative voting (Hortala-Vallve (2012)), and the linking mechanisms proposed

in Jackson and Sonnenschein (2007). There are however two major differences. First, in these

schemes voters can shift their own votes from one proposal to another, within the limits of a bud-

get constraint, but are not allowed to trade votes with other voters. Second, such mechanisms

are formulated as solutions to Bayesian collective decision problems, where preference intensity is

represented by von Neumann-Morgenstsern utility functions. The approach and solution concepts

are grounded in non-cooperative game theory and agents maximize expected utility. Neither fea-

ture applies to our analysis, where votes can be traded across voters but not across proposals, and

preferences representations that maintain ordinal rankings are fully interchangeable.

In terms of solution concepts, this paper is connected to work on dynamics and stability in

environments that do not allow side payments. We have in mind the problem of achieving stabil-

ity in sequential rounds of matching among different agents (Gale and Shapley, 1962; Roth and

Sotomayor, 1990; Roth and Vande Vate, 1990), in creating or deleting links in the formation of

networks (Jackson and Wolinsky, 1996; Watts, 2001; Jackson and Watts, 2002), or in sequences of

6The cooperative game theory literature has proposed alternative definitions of farsighted stability, with a focus
on solution concepts that extend the von Neumann - Morgenstern solution to allow for farsighted domination (in
addition to the authors cited above, see for example Diamantoudi and Xue (2003) and Mauleon et al. (2011)). We
explore the relationship between our solution and alternative approaches in Appendix B.
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barter trades in an exchange economy without money (Feldman, 1973, 1974; Green, 1974). While

the substantive issues addressed in those paper are different from vote trading, the modeling of

dynamics and stability is similar in spirit to ours. In all of these cases, as in the approach we take

in this paper, the problem is studied by combining a definition of stability and a rule specifying

the dynamic process leading to stable outcomes.

In what follows, we begin by describing the general framework (Section 2). In Section 3, we

discuss the existence of stable vote allocations reachable via trading, and their properties–the

Pareto optimality of stable vote allocations and the relationship between stable outcomes and the

Condorcet winner. We then extend the model to allow for farsightedness (Section 4) and study

the existence and properties of farsightedly stable vote allocations. Section 5 summarizes our

conclusions and discusses possible directions of future research.

2 The model

Consider a committee C = {1, ..., N} of N (odd) voters who must approve or reject each of K

independent binary proposals. The set of proposals is denoted P = {1, ..., k, ...,K}. Committee

members have separable preferences represented by a profile of values, z, where zki ∈ R is the value

attached by member i to the approval of proposal k, or the utility i experiences if k passes. Value

zki is positive if i is in favor of k and negative if i is opposed. The value of any proposal failing

is normalized to 0. We call xi ≡ |zi| voter i’s intensity on proposal k. We specify the profile

of cardinal values z because working with such a profile will prove convenient and intuitive, but

our analysis relies only on individual ordinal rankings over the 2K possible outcomes (all possible

combinations of passing and failing for each proposal). Proposals are voted upon one-by-one, and

each proposal k is decided through simple majority voting.

Before voting takes place, committee members can trade votes. One can think of votes in our

model as if they were physical ballots, each one tagged by proposal. A vote trade is an exchange

of ballots, with no enforcement or credibility problem. After trading, a voter may own zero votes

over some proposals and several votes over others, but cannot hold negative votes on any issue.

We call vki the votes held by voter i over proposal k, vi = (v1i , ..., v
K
i ) the profile of votes held by i

over all proposals, and v = (v1, ..., vi, ..., vN ) a vote allocation, i.e., a profile of vote holdings for all

voters and proposals. The initial vote allocation is denoted by v0 = (v01, ..., v0N ). We impose no

restriction on v0, beyond vk0i ≥ 0 for all i, k and, to avoid ties,
∑

i v
k
0i odd for all k. Let V denote

the set of feasible vote allocations: v ∈ V ⇐⇒
∑

i v
k
i =

∑
i v
k
0i for all k and vki ≥ 0 for all i, k.7

Definition 1 A trade is an ordered pair of vote allocations (v, v′), such that v, v′ ∈ V and v 6= v′.

That is, the trade (v, v′) is a reallocation of votes from v to v′. Voter i’s net trade from (v, v′)

is denoted δi(v, v
′), where δki (v, v′) = v′ki − vki .

7Note that
∑

k v
k
i 6=

∑
k v

k
0i is feasible because we do not restrict trades to be one-to-one.
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Given a feasible vote allocation v, when voting takes place on proposal k each voter has a

dominant strategy to cast all her votes in favor of the proposal if her proposal’s value is positive

(zki > 0), and against the proposal if her proposal’s value is negative (zki < 0). We indicate by

P(v) ⊆ P the set of proposals that receive at least (
∑

i v
k
0i + 1)/2 favorable votes, and therefore

pass. We call P(v) the outcome of the vote if voting occurs at allocation v. Finally, we define ui(v)

as the utility of voter i if voting occurs at v: ui(v) =
∑

k∈P(v) z
k
i . Preferences over outcomes are

assumed to be strict. That is, ui(v) = ui(v
′) if and only if P(v) = P(v′).8

Our focus is on the existence and properties of vote allocations that hold no incentives for

trading. Without loss of generality we will assume that there are no unanimous issues, i.e., there

is no issue k such that either zki > 0 for all i or zki < 0 for all i.9 Consider any trade (v, v′), and

let ∆k
i (v, v

′) = |δki (v, v′)| denote the absolute change in vote holdings for individual i on proposal

k. Denote ∆i(v, v
′) =

∑K
k=1 ∆k

i (v, v
′). We define:

Definition 2 Let C ⊆ C be a non-empty coalition. The trade (v, v′) is a payoff-improving trade

for C if i ∈ C ⇔ ∆i(v, v
′) > 0 and i ∈ C ⇒ ui(v

′) > ui(v).

That is, a trade is called payoff-improving for C if only voters in C, and all voters in C, trade,

and every voter in C is strictly better off with the outcome that would result from the new vote

allocation. Coalition C can have any arbitrary size between 2 and N . We then say:

Definition 3 A coalition C ⊆ C blocks v if there exists a payoff-improving trade (v, v′), for C.

Call (v, v′) a blocking trade.

We denote by B(v) the set of all blocking trades at v – i.e. the set of all feasible payoff-improving

trades for all possible coalitions.

Definition 4 A vote allocation v ∈ V is stable if B(v) = ∅.

Our definition of stability thus coincides with the core: a vote allocation v ∈ V is stable if it

belongs in the core. Note that for any N , K, and z the core is not empty: a feasible allocation

of votes where a single voter i holds a majority of votes on every issue is always in the core and

thus is trivially stable: no exchange of votes involving voter i can make i strictly better-off; and no

exchange of votes that does not involve voter i can make anyone else strictly better-off. Hence:

Proposition 1 A stable vote allocation v exists for all z, N , and K.

8For any i, strictness is satisfied for all zi, except for a set of measure zero. Some of the examples considered later
in the paper allow voters to have weak preferences. This is done for expositional clarity only, and the examples are
easily modified to strict preferences.

9Exchanging votes on a unanimous issue can never change the outcome.
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2.1 Dynamic adjustment: Pivot algorithms.

Stable vote allocations exist, but are they reachable through sequential decentralized exchange? To

answer the question, we need to specify the dynamic process through which trades take place.

We posit a dynamic process characterized by sequences of trades yielding myopic strict gains

to all coalition members:

Definition 5 A Pivot algorithm is any mechanism generating a sequence of trades as follows:

Start from the initial vote allocation v0. If there is no blocking trade, stop. If there is one such trade,

execute it. If there are multiple such trades, execute one according to a choice rule R. Continue in

this fashion until no further blocking trade exists.

The definition describes a family of algorithms, and individual algorithms differ in the specifi-

cation of the choice rule R that is applied when multiple blocking trades are possible. For example,

R may select each possible trade with equal probability; or give priority to trades with higher

total gains or involving fewer, or more numerous, or specific voters. Rule R can depend on the

current allocation or history of votes, and can be stochastic. Formally, R specifies a probability

distribution over B(v), for each vote allocation v such that B(v) 6= ∅. For any B(v) 6= ∅ and

for any (v, v′) ∈ B(v), we denote by R(v, v′) ≥ 0 the probability that (v, v′) is selected at v,

with
∑

v′∈B(v)R(v, v′) = 1. Note that R selects a trade, hence both a coalition and a specific ex-

change of votes for that coalition, among all possible coalitions and vote exchanges that are strictly

payoff-improving for the voters involved in the trade.

Payoff improving trades are not restricted to two proposals only, nor to exchanging one vote

for one vote: a voter can trade her vote or bundles of votes on one or more issues, in exchange for

other voters’ vote or votes on one or more issues, or in fact in exchange for no other votes. The

only restriction we are imposing is that the trades be strictly payoff-improving for all traders. If a

trade is payoff improving, it is a legitimate trade under the Pivot algorithms.

The name Pivot algorithm comes from an observation due to Riker and Brams (1973): if a trade

is strictly payoff improving, it must alter the outcome of the vote; hence it must involve pivotal

votes. In the broad definition we are using here, not all traded votes need to be pivotal: as long

as some are, and the outcome is modified by the trade in a direction that benefits all members of

the trading coalition, redundant votes may be traded too. Redundant votes are votes whose trade

does not affect the outcome: votes traded between voters on the same side of an issue, or votes

traded between voters on opposite sides, but not sufficient to change which side holds a majority.

Their trade is irrelevant to myopic payoffs but can affect the path of future trades by altering the

blocking possibilities of different future coalitions.
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3 Pivot-stable vote allocations: Existence and Properties

Do Pivot algorithms converge to stable vote allocations? Stated differently, do sequential myopic

trades converge to the core? The question is not trivial because any Pivot trade changes default

outcomes and alters the existing set of blocking trades, potentially leading to new Pivot trades, in

a sequence that in principle could result in a perennial cycle.

3.1 Existence

We define:

Definition 6 An allocation of votes v is Pivot-stable if it is stable and reachable from v0 through

a Pivot algorithm in a finite number of steps.

The following result establishes the general existence of Pivot-stable vote allocations:

Theorem 1 A Pivot-stable allocation of votes exists for all v0, K, N , and z.

Before presenting a formal proof of the theorem, it is useful to first explain the intuition with

an example.

Example 1. Consider the value matrix in Table 1: rows represent proposals, columns represent

voters, and the entry in each cell is zki , the value attached by voter i to proposal k passing. (Recall

that the value of a failed proposal is normalized to zero for all voters.)

1 2 3 4 5

A 2 −1 −2 1 1

B −1 2 1 −2 2

Table 1: Value matrix for Example 1.

Suppose v0 = {1,1, ..1}. At v0, proposals A and B both pass with a vote of 3 − 2: u1(v0) =

u2(v0) = 1, u3(v0) = u4(v0) = −1, u5(v0) = 3. Allocation v0 is not stable: it can be blocked by

voters 3 and 4. Voter 3 gives a B vote to 4, in exchange for an A vote, reaching a new vote allocation

v1 = {{1, 1}, {1, 1}, {2, 0}, {0, 2}, {1, 1}}. At v1 both proposals fail, and u3(v1) = u4(v1) = 0, a

strict payoff improvement for voters 3 and 4. Voters 3 and 4 have shifted votes away from a lower

value proposal each was, pre-trade, winning towards a higher value proposal each was losing. The

difference in values is the key to the payoff-improving nature of the trade. Vote allocation v1 is not

stable either. Voters 1 and 2 can block it: voter 1 can trade her B vote to 2 in exchange for an A

vote, reaching allocation v2 = {{2, 0}, {0, 2}, {2, 0}, {0, 2}, {1, 1}}, such that both proposals pass,

and u1(v2) = u2(v2) = 1, a strict payoff improvement for 1 and 2 over allocation v1. Again, the

8



logic of the trade is a shift in votes from low-value proposals the voters were winning pre-trade to

higher value proposals the voters were losing. Allocation v2 is stable.

Over the sequence of trades, the voters’ myopic payoffs have moved non-monotonically, falling

and then rising for voters 1, 2, and 5, rising and then falling for voters 3 and 4. The changes

in payoffs reflect both the direct gains from the trades the voters themselves have executed and

the externalities caused by others’ trades. The number of votes held on each proposal, on the

other hand, is affected only by the trades a voter participates in. At each step of the process, we

can construct an index of the total potential value of each voter’s vote holdings, independently

of the voting outcome. Specifically, let this index be defined as the intensity-weighted sum of i’s

votes–here xAi v
A
i + xBi v

B
i , and call it i’s score at v.10

Voter i’s score does not change when i does not trade (by construction) and, at least in this

example, increases whenever i does trade: after the first trade, it rises from 3 to 4 for voters 3 and

4 (the two voters who trade); after the second trade, it rises, again from 3 to 4, for voters 1 and

2. The increases reflect the logic of the payoff-improving trades. But note that for each voter, the

index has a finite ceiling. In this example, the ceiling is 5(xAi + xBi ), where 5 is the total number

of existing votes on each issue. Thus, if each voter’s score can only move monotonically upwards,

trade must end in finite time.

What complicates the proof of Theorem 1 is that, unfortunately, the simple monotonicity of

the example does not extend to the general case. If multiple votes are given away on the same

proposal, if trades involve more than two voters, if some of the votes traded are redundant, in all

of these cases traders in payoff-improving trades may see their scores decline. Consider Example 2:

Example 2. The value matrix is reported in Table 2. As before, rows represent proposals,

columns represent voters, and the entry in each cell is zki , the value attached by voter i to proposal

k passing.

1 2 3

A 5 −1 −1

B −4 2 −1

Table 2: An example where the only existing blocking trade causes a decline in score for voter 1.
Vote allocations are { {1,2},{1,0},{1,1} }

At v, voter 1 has one vote on A and two votes on B; voter 2 has one vote on A and zero votes

on B, and voter 3 has one vote on each proposal. Without trade, A fails 2-1 and B fails 3-0. But

v is not stable: voters 1 and 2 are a blocking coalition. Voter 1 trades both of her B votes to

voter 2 in exchange for voter 2’s A vote; in the resulting allocation v′ both A and B pass 2-1, and

u1(v
′) = u2(v

′) = 1, a strict improvement for both voters over u1(v) = u2(v) = 0. Nevertheless,

voter 1’s score falls from 13 to 10. There is no alternative trade that benefits all members of a

10One can see that separability is essential to the construction, as the score function is only well-defined with
separable preferences.
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trading coalition, and thus there is no trade such that voter 1’s score does not fall.

It turns out, however, that the main intuition is robust. The simple fact that all voters taking

part in a trade must strictly gain from the trade is sufficient to guarantee that there always exists

a path of trades such that any voter’s score can decline at most a finite number of times. But then,

since the score is bounded, trade must end in finite time. The proof of Theorem 1 defines a general

algorithm for constructing such a path for arbitrary environments.

The proof proceeds in two steps. We begin by side-stepping the complication illustrated in

Example 2: Lemma 1 shows that if every blocking trade changes outcomes only on proposals that

win or lose by exactly one vote, then for every blocking coalition C and for every i ∈ C there

always exists a blocking trade for C that is score-improving for i. The second part of the proof

then expands the environment to arbitrary v, allowing for blocking trades in which multiple votes

may be traded away.

Before describing the proof, two additional definitions are useful. First, the index used in

Example 1 should be defined formally:

Definition 7 Consider voter i and a vote allocation v. Voter i’s score at v is given by:

σi(v) =
K∑
k=1

xki v
k
i .

Second, Lemma 1 applies to blocking trades on proposals decided by a single vote. This too

should be made precise.

Definition 8 Call Nk
+ the set of voters in favor of proposal k, and Nk

− the set of voters against pro-

posal k. We say that at v a proposal is decided by minimal majority if
∣∣∣∑i∈Nk

+
vki −

∑
i∈Nk

−
vki

∣∣∣ =

1.

Lemma 1 Suppose that at v every blocking trade (v, v′) changes outcomes only on proposals that

are decided by minimal majority at v. Then for any C that blocks v and for any i ∈ C, there exists

a blocking trade, (v, v′), such that σi(v
′) > σi(v).

Proof. The proof is constructive. If v is stable, there are no blocking trades. Suppose then that

v is not stable and there is at least one blocking coalition; if there is more than one, select any

blocking coalition C. Because C is a blocking coalition at v, there must exist at least one set of

(two or more) proposals whose resolution is modified by a feasible payoff improving trade within

C. If multiple sets of such proposals exist, select one. Call it P̃ . Consider any voter i ∈ C. Define

P̃w(i) = {P ∈ P̃ | i is on the winning side for P ∈ P̃ post-trade and is on the losing side pre-trade}
and P̃ l(i) = {P ∈ P̃ | i is on the losing side for P ∈ P̃ post-trade and is on the winning side pre-

trade}, and observe that P̃ = P̃w(i) ∪ P̃ l(i), since, by selection of P̃ , trade changes the resolution of

all proposals in P̃ . Because i ∈ C, it must be the case that i strictly gains from the trade overall.
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Hence, even though the two sets, P̃w(i)and P̃ l(i), may have different cardinality, by definition of

improving trade,
∑

k∈P̃w(i) x
k
i <

∑
k∈P̃ l(i) x

k
i . Because all P ∈ P̃ are decided by minimal majority

at v, one can construct a blocking trade by reallocating a single vote within C on each P ∈ P̃ , and

leaving unchanged all vote holdings on the other proposals. Specifically, construct a trade such

that i receives one extra vote on all P ∈ P̃w(i), and gives away one vote on any P k ∈ P̃ l(i)such that

vki > 0. But then

σi(v
′)− σi(v) =

 ∑
k∈P̃w(i)

xki v
′k
i +

∑
k∈P̃ l(i)

xki v
′k
i

−
 ∑
k∈P̃w(i)

xki v
k
i +

∑
k∈P̃ l(i)

xki v
k
i


≥

∑
k∈P̃w(i)

xki −
∑

k∈P̃ l(i)

xki

> 0.

The score of voter i has increased.

An observation about this construction is key to understanding what follows. Voter i, designated

as the recipient of a vote for each proposal in P̃w(i) and, wherever possible, as the source of the

traded votes for proposals in P̃ l(i), is chosen arbitrarily and can be any member of the blocking

coalition. The trade is constructed to guarantee that i’s score increases: for any arbitrary i ∈ C,

there exists a trade with such property.

Proof of Theorem 1. We construct an algorithm such that, starting at any initial vote allocation

v0, for any K, N , and z, there exists a finite sequence of blocking trades ending in a stable vote

allocation v∗.

At any step of the sequence with vote allocation v, denote by P̂ (v) the set of proposals that are

not decided by a minimal majority at v, with |P̂ (v)| ≤ K. There are three cases to consider. Case

0: there exists no blocking trade. Hence v is stable, and the theorem holds. Case 1: there exists

a blocking trade which changes the outcomes on some proposals that are not decided by minimal

majority at v. Case 2: all blocking trades at v change only proposals that are decided by a minimal

majority at v.

If we are in Case 1 at v, there exists at least one blocking trade that includes exchanging

pivotal votes on a non-empty subset of P̂ (v). If there are multiple such trades, select one, and call̂̂
P the set of non-minimal majority proposals at v whose resolution is modified by the trade. Any

outcome achieved by a blocking trade involving
̂̂
P can always be replicated by a blocking trade,

(v, v′), constructed so that at v′ all proposals in
̂̂
P are decided by a minimal majority. Execute one

such trade. This reduces the number of proposals that are not decided by a minimal majority by

| ̂̂P | > 0. Thus |P̂ (v′)| < |P̂ (v)|. At v′, again we can be in Case 0, Case 1, or Case 2.

If we are in Case 2 at v, then there exists a blocking coalition and a blocking trade for that

coalition, (v, v′), that only changes proposals decided by minimal majority at v. If there are multiple

such coalitions, select one, and call it C. Assign to each voter an index i ∈ {1, ..., N}, and define i∗C

11



to be the unique voter in C with the property that i∗C ≤ i for all i ∈ C–that is, i∗C is the voter in C

with the lowest index. By Lemma 1 we can find a blocking trade for C such that σi∗C (v′) > σi∗C (v),

and such that the proposals involved in the trade continue to be decided by minimal majority at

v′. Execute that trade. At v′, again we can be in Case 0, Case 1, or Case 2.

At any future step and vote allocation v proceed as above. The algorithm defines a sequence of

blocking trades, or ends trade if no blocking trade exists. We claim that this algorithm must end

after a finite number of trades.

The logic is as follows. First, because |P̂ (v)| ≤ K <∞ and |P̂ (v′)| < |P̂ (v)| we can only be in

Case 1 a finite number of times in the sequence. Thus we only have to ensure that we can be in

Case 2 only a finite number of times. Consider voter 1. For voter 1, we know that whenever we are

in Case 2 at step t, σ1(v
′) > σ1(v) if 1 ∈ C, because 1 = i∗C , and σ1(v

′) = σ1(v) if 1 /∈ C. Because

1’s score is a bounded function of v, this implies that 1 can be in at most a finite number of Case 2

blocking trades. From above, we also know that 1 can be party to at most a finite number of Case

1 blocking trades. Hence there is a finite number of steps in the sequence that have a blocking

trade with a coalition that includes voter 1.

Next consider voter 2. For voter 2 we know that σ2(v
′) > σ2(v) whenever we are in Case 2 and

1 /∈ C but 2 ∈ C, because 2 = i∗C . At any step of Case 2 where {1, 2} ⊆ C, 2’s score may possibly

decrease because 1 = i∗C , but this can happen only a finite number of times, because 1 can only

be in a finite number of blocking trades in the sequence. At any step of Case 2 where 2 /∈ C, 2’s

vote holdings are unchanged, so 2’s score is unchanged. Because 2’s score is bounded above, this

implies that 2 can be in at most a finite number of Case 2 blocking trades. And, from above, we

also know that 2 can be involved in at most a finite number of Case 1 blocking trades. Hence there

is a finite number of steps in the sequence that have a blocking trade involving voter 2. Extending

the logic of this argument to voters with indices i > 2, it follows that every voter can be in at most

a finite number of blocking trades in the sequence. Because there is a finite number of voters, each

of whom can be involved in only a finite number of blocking trades in the sequence, the sequence

can only have a finite number of steps, and must end at a stable vote allocation. Hence the set of

Pivot stable allocations is non-empty.

The result holds broadly. The only condition we impose is that all members of a trading coalition

must strictly benefit (myopically) from the trade. We do not restrict the size of the coalition or the

number of proposals affected by vote trades; we do not require that trades be one-to-one or limited

to pivotal votes. And yet we find that there is always–for any number of voters and proposals,

for any profile of separable preferences and any initial vote allocation–a path of payoff-improving

trades that leads to a stable vote allocation. Note that because the theorem holds for any arbitrary

selection of coalition C, it holds, a fortiori, if we constrain allowable coalitions–for example if we

allow only pairwise trades or impose some cohesion requirement on C. Any such constraint will

reduce the set of unstable vote allocations and strengthen the case for stability.

The theorem does not say that every trading path must converge to stability; rather, it says
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that there always exists a trading path for which this is true. However, the existence of one such

path for any arbitrary starting allocation v0 allows us to identify a broad class of selection rules R

for which convergence to stability is guaranteed to occur in finite time. Call Rr the family of all

rules R such that, for all v ∈ V and for all (v, v′) ∈ B(v), R(v, v′) > 0. That is, Rr is the family

of all stochastic selection rules R that put positive probability on any existing blocking trade. We

can then state:11

Corollary 1 If R ∈ Rr, then for all v0, K, N , and z, a Pivot-stable allocation of votes is reached

with probability 1 in finite time.

Proof. For any vote allocation v, if v is stable, the result holds trivially; if not, denote by L(v)

the length of the shortest sequence of blocking trades, starting at v and ending at some stable vote

allocation v∗L(v). Let L = maxv∈V{L(v)}, which we know exists because V is a finite set and a

stable vote allocation v∗ exists. Let r = min{R(v, v′)|B(v) 6= ∅ and (v, v′) ∈ B(v)} > 0, and let

π = rL(where L is a power). Suppose the initial vote allocation is v0. Then the probability that a

stable allocation is reached in a sequence of L or fewer trades from v0 is greater than or equal to

π. Similarly the probability that a stable allocation is reached in a sequence of mL or fewer trades

from v0 is greater than or equal to
∑m

j=1(1− π)j−1π = π 1−(1−π)m
1−(1−π) = 1− (1− π)m → 1 as m→∞.

No additional condition is required. As long as all trades have some chance of being selected,

the result holds: convergence to a stable allocation will occur in a finite number of steps.

3.2 Pairwise Trading

Theorem 1 and its corollary tell us that vote trading will lead to stability for a large class of

selection rules, in arbitrary environments. But can we identify conditions under which convergence

is guaranteed for all selection rules? Riker and Brams (1973) proposed a trading rule not unlike our

Pivot algorithms–payoff-improving, myopic, enforceable trades–and conjectured that convergence

to stability required limiting trades to be pairwise. Theorem 1 shows that the conjecture is incorrect.

And yet we show in this section that restricting trade to be pairwise can lead to a stronger result.

When complemented with one intuitive additional condition, pairwise trading leads to stability

along all trading paths.

The additional condition excludes the trade of redundant votes–the gratuitous exchange of votes

that have no effect. Once again, it is required to preserve the monotonicity of the score function

along the path of trade. Consider the following example:

Example 3. Suppose v0 = {1, ..1}. There are four proposals and five voters, and the value

matrix is shown in Table 3:

11The intuition is similar to a well-known result in the matching literature: in marriage markets, random matching
algorithms will eventually lead to a stable match (Roth and Vande Vate 1990). Note however that our environment
is quite different, primarily because payoffs depend on the entire profile of vote allocations.
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1 2 3 4 5

A 1 −2 2 1 −1

B −2 1 2 −1 1

C 1 3 −1 −3 −1

D 2 1 1 −2 −1

Table 3: Pairwise Pivot trades need not converge if redundant trades are possible. An example.

At v0, proposals A,B, and D pass; proposal C fails. All proposals pass or fail by minimal

majority. Consider the following sequence of pairwise Pivot trades. At v0, voter 1 gives one A vote

and one D vote to 2, in exchange for one B vote and one C vote. The trade is strictly payoff-

improving for both traders because it alters the majority direction on A and B; it does not alter

the voting tally on C and D, on which 1 and 2 agree. At v1, proposal D passes and all others fail.

Voters 2 and 3 can block v1: voter 2 gives one A vote and one D vote to 3, in exchange for one

C and one B vote. The trade alters the majority on A and C, and is payoff-improving for both

voters; it does not affect the resolution of D and B, on which the two voters agree. At v2, A,C,

and D pass, and B fails. But v2 is not stable: voters 3 and 4 can trade and raise their myopic

payoff. Voter 3 gives one D vote and one A vote to 4, in exchange for one B and one C vote. The

majority changes on B and D, but not on A and C, on which the two voters agree. At v3, A,B,

and C pass, and D fails. But voters 1 and 4 can block v3: voter 1 gives one C and one B vote to

4, in exchange for one D and one A vote. The trade is strictly payoff-improving because it alters

the majority on C and D in the direction both traders prefer; it does not alter the majority on A

and B, on which the two traders agree. This last trade, however, has brought the vote allocation

back to v0. The sequence of trades can then be repeated into a never ending cycle.

In Example 3, all Pivot trades are pairwise and all proposals, at any step on the path of trade,

are decided by minimal majority. Yet, it is readily verified that traders’ scores at times decrease,

and vote allocations cycle. The problem comes from vote trades on proposals on which the traders

agree. These redundant trades have no effect on payoffs, and thus a voter can trade away a vote on

a high value proposal for a vote on a lower value proposal: the trade has no effect, but the voter’s

score declines. The declines in score make cycles possible.

To guarantee convergence to a stable vote allocation, we need to rule out redundant trades.

What this means exactly is formalized in the following two definitions.

Definition 9 (v, v′′) is a reduction of (v, v′) if P (v′′) = P (v′), ∆k
i (v, v

′) = 0 ⇒ ∆k
i (v, v

′′) = 0 for

all i, k, and for all i, k, ∆k
i (v, v

′) ≥ 0⇒ ∆k
i (v, v

′) ≥ ∆k
i (v, v

′′), with ∆k
i (v, v

′) > ∆k
i (v, v

′′) for some

i, k.

Definition 10 Consider a blocking trade (v, v′). We say that (v, v′) is a minimal blocking trade if

there does not exist a reduction of (v, v′).
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1 2 3 4 5 6 7

A 2 −1 −1 −1 1 1 1

B −1 2 −1 −1 1 1 1

C −1 −1 2 −1 1 1 1

D −1 −1 −1 2 1 1 1

Table 4: Minimal Pivot trades need not converge if coalitional trades are possible. An example.

Loosely speaking, minimality rules out two kinds of trades: if trade (v, v′) does not change the

outcome of proposal k, then no votes are traded on k; and if trade (v, v′) does change the outcome

of proposal k, then k is decided by minimal majority at v′. It is straightforward to show that if v

is not a stable allocation, then the set of minimal blocking trades is non-empty.

We can then state:

Theorem 2 If trades are restricted to be pairwise and minimal, then a Pivot-stable allocation of

votes exists for all v0, K, N , z, and R.

As in the case of Theorem 1, the proof builds on the score function. It shows that, in the

streamlined environment of Theorem 2, traders’ scores can decrease only if trade occurs on non-

minimal majority proposals. But by minimality, any such trade must bring the proposals to minimal

majority, and thus the number of trades on which scores can fall must be finite. Because the score

function is bounded and the number of voters is finite, it then follows that the number of trades

must be finite and bounded as well. And this must be true on any path of trade determined by

any choice rule R. A formal proof is in Appendix A.

Example 3 shows that, without minimality, pairwise trade is not sufficient to guarantee con-

vergence to stability for all selection rules. But it is also the case that, without the restriction to

pairwise trading, minimality is not sufficient either. Consider the following example:

Example 4. Table 4 reports the value matrix. The initial vote allocation is v0 = {1,1, ..,1}.

At v0, all proposals pass by minimal majority, and ui(v0) = −1 for i = {1, 2, 3, 4}. Consider

a coalition composed of such voters, and the following coalition trade: voter 1 gives her A vote

to voter 2, in exchange for 2’s B vote; voter 3 gives her C vote to voter 4, in exchange for 4’s D

vote. At v1, all proposals fail and ui(v1) = 0 for all coalition members. For all, the trade is strictly

improving. The vote allocation v1 is not Pivot stable: voters 1 and 2 can block v1 by trading back

their respective votes on A and B, reaching outcome P(v2) = AB, and enjoying a strictly positive

increase in payoffs: uj(v2) = 1 for j = {1, 2}. At v2, us(v2) = −2 for s = {3, 4}, but 3 and 4

can block v2, trade back their votes on C and D, and obtain a strict improvement in their payoff:

P(v3) = ABCD, and us(v3) = −1 for s = {3, 4}. The sequence of trades has generated a cycle:

v3 = v0, an allocation that is blocked by coalition C = {1, 2, 3, 4}, etc.. Hence for R that selects

the blocking coalitions in the order described, no Pivot stable allocation of votes can be reached.
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We can rephrase the observation in terms of each voter’s score: although all trades are strictly

payoff-improving, the first coalition trade, from v0 to v1, lowers the score of all traders involved

from 5 to 4. The two successive trades raise the traders’ scores back to 5, one pair at a time, but

the initial decline makes a cycle possible.

Note that all trades in Example 4 are minimal. And yet, a decline in scores can accompany a

profitable trade because of the trading externalities present within the coalition: a coalition member

can engage in a vote exchange that by itself would not be profitable and that causes a decline in

score because she benefits from the other members’ trades. When trade is pairwise and minimal,

all trades must be advantageous to all active traders, and this cause of possible cycles is excluded.

We conclude this section with one final remark on the technique used to prove and illustrate our

results. We have relied repeatedly on the score function because it makes transparent the source of

the gain from blocking trades and the built-in ceiling in such possible gains and trades. The score

function is a cardinal measure of the potential value of voters’ vote holdings, but it is important

to stress that the reliance on a cardinal measure is for convenience only. The logic is fully ordinal:

changing all intensities xki in any arbitrary fashion that preserves all ordinal rankings has no impact

on any of our results.

3.3 Properties of Pivot-stable outcomes

Following Theorem 1, a Pivot-stable vote allocation always exists. When trade comes to an end,

the outcome of the vote is realized. Do outcomes reached via vote trading possess desirable welfare

properties?

We define:

Definition 11 An outcome P(v) is a Pivot-stable outcome if v is a Pivot-stable vote allocation.

For any fixed K, N , and z, we denote V∗ the set of all Pivot-stable vote allocations, and P(V∗)
the set of all stable outcomes reachable with positive probability through a Pivot algorithm. If

P(V∗) is a singleton, we use the notation P(V∗) to denote the unique element of P(V∗).12

We find:

Theorem 3 All Pivot-stable outcomes must be in the Pareto set, for all v0, K, N , and z.

Proof. We know from Theorem 1 that a Pivot-stable outcome exists. Regardless of the history of

previous trades, if the outcome is Pareto dominated, then the coalition of the whole can always reach

a Pareto superior outcome and has a profitable deviation. But then the allocation corresponding

to the Pareto-dominated outcome cannot be Pivot-stable.

12Note that uniqueness of P(V∗) does not imply that V∗ is a singleton. There can be multiple Pivot-stable vote
allocations, all leading to the same outcome.
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If no restriction on coalition formation is imposed, all Pivot-stable outcomes must be Pareto

optimal. Coupled with Theorem 1, Theorem 3 teaches us that vote trading can always reach a

Pareto optimal outcome (contrary to earlier conjectures). But note that the result relies on being

able to form the coalition of the whole. Thus the result holds for any coalitional restriction that

does not interfere with the coalition of the whole, but does not hold if such coalition cannot form.

Riker and Brams’ (1973) ”paradox of vote trading” is a well-known example where pairwise trades

only are possible, and the outcome they identify (which would be Pivot-stable if only pairwise

trades were allowed) is not Pareto optimal.13

A second property generally viewed as desirable in voting environments is the ability to reach

the Condorcet winner: the outcome that is preferred by a majority of voters to every other outcome.

The Condorcet winner need not exist, and a voting system is said to satisfy Condorcet consistency

if it uniquely selects the Condorcet winner whenever it does exist. Is Pivot stability Condorcet

consistent?14

Because the Condorcet winner implicitly assumes unweighted voting, in the remainder of this

section we restrict the analysis to environments where v0 = {1, ., 1}. The main result is negative:

vote trading may lead to stable outcomes that differ from the Condorcet winner.

Proposition 2 If K > 2 and N > 3, there exist z such that P is the Condorcet winner but there

exists P′ 6= P such that P′ ∈ P(V∗).

Proof. Consider the following environment with v0 = {1, ..,1}, K = 3 and N = 5:

1 2 3 4 5
A 4 −7 1 −1 4
B 1 1 −4 4 −1
C −3 4 2 −2 2

Table 5: Preference profile such that a Pivot-stable outcome is not the Condorcet winner.

For the preference profile in Table 5, P(v0) = ABC is the Condorcet winner. Consider the

following set of trades. At v0, voter 2 gives a B vote to 3, in exchange for a A vote; at the new

vote allocation P(v1) = C. However v1 is not stable: it can be blocked by voters 4 and 5, trading

votes on A and B so that P(v2) = ABC. But v2 is again not stable: it can be blocked by 1 and 3,

trading votes on B and C so that P(v3) = A. Allocation v3 is stable, and thus A is a Pivot-stable

outcome along this path of trade. To see that v3 is stable, notice that no B votes can be traded

because voter 3 has a majority of B votes and ranks winning B higher than winning A and C.

Thus at v3 the proposals on which trade can possibly occur are only two, A and C, and the possible

13It is also easy to construct cases in which a stable outcome reached via pairwise trade is in fact Pareto optimal.
The general point is that with pairwise trade Pareto optimality is not guaranteed.

14Utilitarian welfare criteria are not appropriate here because they depend on cardinal preferences, and thus can
vary for fixed ordinal rankings.
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outcomes are A (the outcome at v3) or C. Voter 3 cannot trade votes away because she has 0 votes

on both A and C. As for the other voters, either they do not want to trade because they prefer A

to C (voters 1, 4 and 5) or only hold losing votes and cannot trade (voter 2). Finally, note that

although a majority prefers ABC = P(v0) to A = P(v3), the no-trade allocation v0 is not stable.

The example can be generalized to an arbitrary number of voters and proposals. Maintaining

first K = 3, we can add to the example any even number of voters such that at v3 half of them

win on all proposals (i.e. prefer A to pass, and B and C to fail) and half of them lose on all

proposals (i.e. prefer A to fail, and B and C to pass). Adding such voters cannot induce any

further trade at v3. As long as their preferences are such that both types of voters rank ABC

above both outcome B and outcome C, ABC remains the Condorcet winner. And yet P(v3) = A

remains Pivot stable. We can then extend the example to arbitrary K > 3 by adding proposals

such that for each additional proposal, k′, voters i = 1, ..., N − 1 are all in favor of k′ passing, and

furthermore zk
′
i > xAi + xBi + xCi > 0 for i = 1, ..., N − 1. This guarantees that no trade involving

these additional proposals will take place, and P(v3) = A remains Pivot-stable.

Pivot-stability not only fails to satisfy Condorcet consistency; by immediate extension, Proposi-

tion 2 implies that Pivot stability is inconsistent with any solution concept that is itself Condorcet

consistent.- i.e., that uniquely selects the Condorcet winner when it exists.

The negative result in Proposition 2 does not extend to the special cases of K = 2 or N = 3.

The two propositions below make this point. They are stated separately because the two results

stem from very different logic.

Proposition 3 If N = 3, then for all K and z, if the Condorcet winner exists, P(V∗) is a singleton,

and is the Condorcet winner.

Proof. See Appendix A

Proposition 4 If K = 2, then for all N and z, P(V∗) is a singleton and is the Condorcet winner,

if the Condorcet winner exists. If P(V∗) 6= P(v0), a majority prefers P(V∗) to P(v0).

Proof. See Appendix A.

With N = 3, the result follows immediately. From Park (1967) and Kadane (1972), we know

that the Condorcet winner, if it exists, must coincide with the no trade outcome. If N = 3, a

pair of voters constitutes a majority, and thus if v0 delivers the Condorcet winner it cannot be

blocked. But Proposition 4 does not follow as directly, because trade is indeed possible. Rather, its

proof highlights that in the case of two proposals, trading via the Pivot algorithm can reach only

two possible outcomes - the no trade outcome and its complement. This effectively partitions all

voters into two groups, with opposite preferences between the no trade outcome and its complement.

Differences in preferences ranking over other outcomes within each of these two groups are irrelevant

because such outcomes are unreachable. Over reachable outcomes, preferences within each group

are perfectly aligned. The scenario thus effectively reduces to a contest between two alternatives,
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the no trade outcome and its complement, whose resolution is fully determined by which side holds

more votes. In contrast, when there are more than two proposals all 2K possible outcomes are

reachable in principle, and it is not possible to partition the voters into two groups with opposite

preferences over exactly two reachable outcomes. Hence the logic of the proof of Proposition 4

breaks down for K > 2.

4 Farsighted vote trading

As in most theoretical work on network formation, barter, and matching, the dynamic process we

have studied so far is defined by a myopic algorithm: the Pivot algorithm is explicitly myopic. A

natural question is whether the model can be extended to accommodate forward looking behavior

by the voters, and whether such extension leads to better properties of the resulting outcomes.

Strictly improving myopic trade can trigger subsequent trades by others that harm the initial

traders, not only undoing their original gain but leading to a worse outcome than the pre-trade

vote allocation (as is the case for instance for voter 2 in Table 5).

One approach to modeling forward looking sophistication is to reformulate the model as a

dynamic extensive form game, and characterize the properties of the perfect equilibria of the game.

This, however, requires a different framework, one that imposes much more structure on the basic

vote trading process–specifying a well-defined sequence of moves, information sets, rationing rules.

A more tractable approach based on cooperative game theory delivers a natural extension of the

myopic model. The problem remains complex: because of the externalities involved and because

the opportunities for trade depend on the vote allocation, vote trading cannot be represented under

any of the existing cooperative models of farsightedness.15 Yet we show in this section that the

concept of Pivot stability generalizes to farsighted vote trading, and that the extension allows us

to establish some results.

4.1 Farsighted stability

We begin with some preliminary conventional definitions.

Given two vote allocations v and v′, a coalition C is effective for (v, v′) if v′ ∈ V (v′ is feasible)

and v′i = vi for all i /∈ C. That is, voters in C can move the vote allocation from v to v′ by

reallocating votes among themselves only. A chain from v to v′ is an ordered sequence of vote

allocations v1, ..vm, with v1 = v and vm = v′, and a corresponding sequence of effective coalitions

C1, .., Cm−1 such that for all t = 1, ..m − 1, Ct is effective for (vt, vt+1). A chain is a farsighted

chain (an F-chain) if, in addition, uj(vt) < uj(v
′) for all t = 1, ..m − 1, and all j ∈ Ct, i.e. if

all members of all effective coalitions in the chain strictly prefer the final vote allocation to the

allocation at which they trade. Coalitions in an F-chain thus differ from our earlier definition of

15See Chwe (1994), Mauleon et al. (2011), Ray and Vohra (2015), Dutta and Vohra (2015), and the references
therein.
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blocking coalitions under two dimensions: (1) at any t = 1, ..m − 2, the members of coalition Ct,

effective for (vt, vt+1) need not prefer vt+1 to vt, either strictly or weakly; (2) they must however

strictly prefer the final allocation v′ to vt.

For any pair of vote allocations, v and v′, v′ is said to farsightedly dominate (F-dominate) v if

there exists an F-chain from v to v′. Let D(v) ≡ {v′ ∈ V|v′ F-dominates v}. That is, D(v) is the

set of feasible vote allocations reachable from v via a farsighted chain.

As noted earlier, the definition of stability we have used so far corresponds to the core. The

most natural extension of our approach is to define farsighted stability by reference to the farsighted

core:

Definition 12 The farsighted core, V∗F , is the set of all F-undominated vote allocations. That is,

V∗F = {v| D(v) = ∅}.

Definition 13 A vote allocation v ∈ V is farsightedly stable (F-stable) if and only if v ∈ V∗F

Note that if allocation v is not myopically stable (in the sense of Definition 4) then v is not

farsightedly stable because D(v) is not empty: there exists v′, reachable via a one-step F-chain,

that dominates v. Hence the set of farsightedly stable vote allocations is a subset of the set of

stable vote allocations. Nonetheless, the farsighted core is non-empty, by the same argument used

to prove Proposition 1 (i.e., dictatorial vote allocations are farsightedly stable).

Proposition 5 . An F-stable vote allocation v exists for all K, N , and z.

4.2 F-stable vote allocations reachable via trading: existence and properties

As in our previous discussion, however, what we want to know is whether F-stable vote allocations

are reachable from v0 via an F-chain.16 The definition of farsighted stability does not take into

account the initial starting point. But domination chains provide the necessary dynamic link–they

are the farsighted parallel to the myopic Pivot algorithm. We call V∗F (v0) the set of farsightedly

stable vote allocations relative to the initial allocation v0: v ∈ V∗F (v0) if either v is reachable from

v0 by an F-chain and is not F-dominated, or v0 is undominated and v = v0.
17 Formally:

Definition 14 v ∈ V∗F (v0) and thus is farsightedly stable relative to v0 (is an F0-stable vote

allocation) if and only if one of the following holds: either (1) v ∈ D(v0) ∩ V∗F , or (2) D(v0) = ∅
and v = v0.

Is the set V∗F (v0) always non-empty? Unfortunately, this is not guaranteed.

16Our analysis of farsighted stability makes no restriction on the initial vote allocation, v0.
17As in the case of the Pivot algorithm, at v0 multiple F-chains might exist. F-stability is defined relative to any

possible F-chain, just like myopic stability was defined relative to any possible rule R.
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1 2 3 4 5

A 2 −2 −1 1 −1

B 1 −1 −2 2 2

Table 6: A farsightedly stable allocation relative to v0 need not exist. An example.

Theorem 4 There exist K, N , v0, and z such that no vote allocation is farsightedly stable relative

to v0.

We prove the theorem in Appendix A, using the environment displayed in Table 6.

The initial allocation is v0 = {1, ..,1}. In this example, v0 cannot be F0-stable because there

exists v′ that dominates v0. At v0, P(v0) = B, but there exists a one-trade F-chain to v′ such that

P(v′) = A: voter 1 can give a B vote to 3 in exchange for an A vote, and the trade is profitable

for both. Allocation v′ F-dominates v0, but v′ is not stable either: again there exists a one-trade

F-chain to v′′ such that P(v′′) = B: voter 2 gives a B vote to 4 in exchange for an A vote, and

again the trade is profitable for both. Thus v′ /∈ V∗F (v0). Note that v′′ is not reachable via an

F-chain from v0; thus v′′ /∈ D(v0).
18 The proof in Appendix A shows that v′ is the unique vote

allocation that F-dominates v0. It then follows that V∗F (v0) is empty.

Extending the analysis to farsightedness thus can reverse the earlier stability result. In our

example, the vote allocation v′′ is both myopically and farsightedly stable (it belongs in the far-

sighted core). It is the unique Pivot-stable allocation, and would be reached by myopic traders in

two steps. But v′′is not reachable from v0 by farsighted traders because it does not F-dominate v0.

Convergence to a stable allocation breaks down.

Given Theorem 4, a natural question is whether the definition of farsighted stability should

be weakened to guarantee existence. Different farsighted stability concepts have been proposed

in the literature to overcome the problem of an empty F-core–most noticeably the Bargaining

set (Maschler 1992) and farsighted extensions of the von Neumann and Morgenstern stable set

(Harsanyi 1974, Chwe 1994, Dutta and Vohra 2015, Ray and Vohra 2015). We discuss these

alternative approaches in Appendix B.19 But note that the farsightedness questions investigated in

this paper are different: we know that the F-core is not empty; the question is whether a domination

chain can reach the F-core, starting from some initial allocation v0. We also know that for some

parameter values the answer is positive–it is easy to construct such examples, for instance modifying

the value matrix in Table 6 by setting zA4 = 2 and zB4 = 1. Thus in general V∗F (v0) need not empty,

and F0-stable allocations do exist.

When an F0-stable allocation exists, how does the related vote outcome fare in terms of welfare?

18Both F-chains are one-trade F-chains, or equivalently myopic payoff-improving trades. But recall that an alloca-
tion cannot be F-undominated if it is myopically dominated.

19Briefly: we can use the logic of the Bargaining set to guarantee that V∗F (v0) is not empty. Building on the F-stable
set–the farsighted extension of the von Neumann and Morgenstern stable set–is more ambitious and more difficult.
In particular, existence is not guaranteed.
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1 2 3 4 5

A 1 2 1 −1 −2

B −2 1 2 2 −1

Table 7: V∗F (v0) is not empty but contains no vote allocation yielding the Condorcet winner. An
example.

The myopic analysis already delivers an answer. Recall that an allocation not in the Pareto set

is not in the myopic core, and hence is not in the F-core. Thus Theorem 3 extends directly to

farsightedness.

Call PF0(v) a farsightedly-stable outcome relative to v0 (F0-stable) if v ∈ V∗F (v0).

Theorem 5 If v ∈ V∗F (v0), then PF0(v) is Pareto optimal, for all v0, K, N , and z.

The second question–whether there is any relationship between F0-stable outcomes and the

Condorcet winner–is less straightforward, and here our conclusions are less positive.20 As remarked

earlier, if the Condorcet winner exists it can only be the outcome corresponding to v0. But any

v ∈ V∗F (v0) reached by farsighted trade must lead to an outcome that traders strictly prefer to

P(v0), and thus PF0(v) 6= P(v0) for all v 6= v0. At the same time, v0 ∈ V∗F (v0) only if v0 is F-

undominated, i.e. if there is no trade. This logic implies Proposition 7 and its corollary in Appendix

A: the Condorcet winner can be an F0-stable outcome only in the absence of vote trading. Hence, in

our model vote trading and farsightedness are incompatible with achieving the Condorcet winner.

The result would not be problematic if, in the presence of farsightedness, the existence of the

Condorcet winner guaranteed no trade. This in fact is what must happen if N = 3, following the

same logic as the myopic case: if P(v0) is the Condorcet winner, no F-chain can exist out of v0;

hence v0 is the unique F0-stable vote allocation and the Condorcet winner is the unique F0-stable

outcome. Proposition 3 extends to farsighted stability.

More interesting are the normative properties of vote trading when profitable trades may in

principle take place. Under myopia, we know that when voting concerns two proposals only, vote

trading always yields the Condorcet winner when the Condorcet winner exists. The result does not

extend to farsighted trading:

Proposition 6 Suppose K = 2 and the Condorcet winner exists. Then there exist N and z such

that V∗F (v0) is not empty but contains no vote allocation yielding the Condorcet winner.

Proof. Consider the environment in Table 7.

P(v0) = AB is the Condorcet winner. Consider the following two-step F-chain ending at v, with

P(v) = B: starting at v0, 4 gives a B vote to 5, and 5 gives an A vote to 4 (and thus P(v1) = A);

at v1, 3, 4, and 5 transfer all their votes to 4, reaching v such that P(v) = B and making 4 dictator.

20As in Section 3.2, the analysis of Condorcet winners assumes v0 = {1, ..1}.
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Because 4 is dictator and obtains her preferred outcome, v is in the F-core. Hence v ∈ V∗F (v0):

v is farsightedly stable relative to v0. Proposition 7 (in Appendix A) shows that, if there exists

v ∈ V∗F (v0) and P(v) is not the Condorcet winner, then there exists no F0-stable allocation whose

outcome is the Condorcet winner.

Note, for comparison, that in Table 7 v0 is myopically stable, and, in line with Proposition 4,

P(v0), the Condorcet winner, is the unique Pivot-stable outcome.

The result contradicts the plausible intuition that farsightedness might favor achieving the

Condorcet winner. In fact, the opposite is true: even in the one limited case in which vote trad-

ing is guaranteed to deliver the Condorcet winner under myopia, the result breaks down under

farsightedness.

5 Conclusions

This paper proposes a general theoretical framework for studying vote trading in committees.

It starts from two essential features: (1) a notion of stability: a stable vote allocation is such

that no strict payoff improving vote trade exists; and (2) a class of vote trading algorithms–

Pivot algorithms–that define dynamic paths from initially unstable vote allocations to stable vote

allocations. The model has three key assumptions. First, proposals are binary and preferences are

separable across proposals: a voters’ preferred resolution of proposal A does not depend on the

resolution of proposal B. Second, voting takes place proposal by proposal. Voters can trade votes

simultaneously on multiple proposals without constraint, but each vote is specialized by proposal.

Finally, as in the canonical model of economic exchange, each vote trade is a transfer of a property

right among the trading parties. Thus trades cannot be reversed unilaterally, and votes can be

re-traded.

The central finding of the paper is a general existence result: there always exists a sequence

of payoff-improving trades that leads to a stable vote allocation in finite time, from any initial

distribution of votes, for any number of voters and proposals, for any separable preferences, and

for any conditions on feasible trading coalitions. Furthermore, if all blocking trades are selected

with positive probability, then trading is guaranteed to converge to a stable vote allocation with

probability one.

In the absence of restrictions on feasible trading coalitions, outcomes corresponding to stable

vote allocations must be in the Pareto set, but in general there is no guarantee that trading will

result in the Condorcet winner when it exists.

It is natural to conjecture that the properties of vote trading might improve if voters are not

myopic and correctly anticipate the consequences of a trade they engage in, trade which can trigger

future trades by other voters. But farsighted vote trading does not lead to stronger results. In

fact, existence is not guaranteed any longer: farsightedly-stable vote allocations reachable from

the initial vote allocation need not exist. If such an allocation does exist, it need not include the
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Condorcet winner, even in special scenarios in which the Condorcet winner is always reached under

myopia. Furthermore, we find that active vote trading, farsightedness, and the achievement of the

Condorcet winner are incompatible. That is, if voters are farsighted, the Condorcet winner can

be the farsighted outcome only if the pre-trade vote allocation is farsightedly stable and no vote

trading takes place.

The basic framework developed in this paper answers core questions of existence, Pareto opti-

mality, and Condorcet consistency. It is a building block that suggests a number of new directions

to pursue.

One potentially productive extension is to committees that operate under voting rules other than

simple majority, with veto players or supermajority requirements. Our framework can be modified

to allow for general voting rules. A voting rule is a mapping that assigns a unique outcome (a subset

of passing proposals) to each vote allocation, Q: V →2K . In such a representation, majority rule is

defined by: k ∈ Q(v) ⇐⇒
∑
{i|zki >0} v

k
i −

∑
{i|zki <0} v

k
i > 0. A qualified majority rule requires the

difference between yes votes and no votes to be greater than or equal to some threshold ∆ > 0. The

presence of veto players can also be represented as a Q function. Other formal parts of the theory,

such as the definitions of blocking coalitions, blocking trades, stability, Pivot algorithms, and so

forth are unchanged, although different voting rules will imply different blocking trades. Thus, vote

allocations that are stable or reachable through a sequence of blocking trades will generally depend

on Q. An analysis of vote trading under different voting rules could improve our understanding of

how different voting rules may lead to more or less vote trading, and how voting rules affect the

normative properties of the stable allocations that are reached through trading.

A second, related extension would consider different restrictions on the vote trading process.

Restrictions could take different forms. They could be embodied in the contract through which

votes are exchanged, for example limiting the extent of re-trading to which a vote is subject. In our

model, once traded, a vote can be traded further by its now owner without any residual control left

to the original owner. If vote trading takes the form of cooperative agreements, re-trading may be

problematic even if the original agreement were enforceable. Because proposals are binary in our

model, one-step re-trading is equivalent to releasing a former trading partner from her commitment,

but longer chains may well be difficult to execute. Whether restrictions on re-trading would favor

or hamper convergence to stability is an open question.

Alternatively, restrictions could be imposed on the coalitions that can organize vote trades. We

have studied explicitly two possibilities only: unlimited coalitional trading (i.e., no restriction at

all on the coalitions that can organize a trade), and, for some additional results, pairwise trading

(i.e., any coalition of exactly two voters). But in some committees or legislatures, norms or party

ties may limit which coalitions can form. For example, in some cases it is difficult to engage in vote

trades that cross ideological or party lines. In other cases, the leadership within the committee

may play a key role in negotiating and enforcing agreements. As noted above, restricting coalitions

will not affect the main existence theorem, because restrictions makes blocking more difficult, but

could affect the properties of Pivot stable outcomes.
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A third possible direction concerns agenda setting and agenda manipulation. In the model

studied in this paper, the set of binary issues is assumed to be exogenously given, and stable

outcomes are determined by the profile of voters’ ordinal rankings over the outcomes. In practice,

the proposals up for vote are typically the outcome of an agenda formation process. One can imagine

different ways to introduce such a process into the model. In one such approach, an agenda setter

or committee chair may have the power to bundle proposals. Alternatively, the committee may

collectively decide, through a voting process, how to bundle a large number of proposals into a

smaller number of proposals. Our results suggest that reducing the number of effective proposals–

reducing the number of possible trades–may in some circumstances be beneficial. Agenda setting

in the form of bundling introduces a different perspective on modeling logrolling in committees.

Considering the agenda formation process would move the analysis in the direction of bargaining

models of legislative decision making (Baron and Ferejohn (1989)) suggesting a non-cooperative

game approach, in contrast to the stability approach pursued here.

Finally, a different but important question is how to incorporate uncertainty in the model. Our

framework has no formal inclusion of uncertainty. In a companion paper (Casella and Palfrey, 2016),

we report findings from an experiment that reproduces the framework studied here, but where trades

are proposed and executed by subjects, as opposed to being ruled by an algorithm. We find some

hoarding of votes on high value proposals, perhaps as a hedge against adverse vote trading by others.

Subjects seem sensitive to the strategic uncertainty they face: it is difficult to predict future vote

trades that might be triggered by a current vote trade. The presence of such ”vague” uncertainty

suggests that ambiguity might also play a role. More traditional modeling of uncertainty using

a Bayesian game approach could also be explored, incorporating private information either about

one’s own preferences or about an unknown state of the world that affects everyone’s welfare, as in

Condorcet jury models.
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Appendix A. Proofs

Theorem 2. If trades are restricted to be pairwise and minimal, then a Pivot-stable allocation of

votes exists for all v0, K, N , z, and R.

Proof. We begin by supposing, as in Lemma 1, that at some v all blocking trades involve only

proposals that are decided by minimal majority. Then, by minimality of the trades no more than

one vote is ever traded on any given proposal (although trades could involve bundles of proposals).

If i does not trade, then σi(v
′) = σi(v), by construction. If i does trade, recall the notation used

on the proof of Lemma 1 and call P̃ the set of proposals on which i trades, P̃ l(i) the subset i

wins pre-trade and loses post-trade, and P̃w(i) the subset i loses per-trade and wins post-trade.

By minimality, the resolution of all proposals on which votes are traded must change. Hence

P̃ l(i) ∪ P̃w(i) = P̃ . Although the two sets may have different cardinality, by definition of pairwise

improving trade,
∑

k∈P̃ l(i) x
k
i <

∑
k∈P̃w(i) x

k
i . Since a single vote is traded on each proposal, we

have:

σi(v
′)− σi(v) =

 ∑
k∈P̃w(i)

xki v
′k
i +

∑
k∈P̃ l(i)

xki v
′k
i

−
 ∑
k∈P̃w(i)

xki v
k
i +

∑
k∈P̃ l(i)

xki v
k
i


≥

∑
k∈P̃w(i)

xki −
∑

k∈P̃ l(i)

xki

> 0.

The score of voter i has increased.

Hence if i trades, σi(v
′) > σi(v). At any future step, either there is no trade and the Pivot-

stable allocation has been reached, or there is trade, and thus there are two voters i and j whose

score increases. The scores of all voters executing pairwise minimal trades on proposals decided by

minimal majority must increase.

Suppose now that at v some blocking minimal trades involve proposals that are not decided by

minimal majority. Call the set of such proposals P̂ (v). On such proposals, no single vote is pivotal,

and hence trades must concern more than one vote. As a result, although
∑

k∈P̃ l(i) x
k
i <

∑
k∈P̃w(i) x

k
i

must continue to hold by definition of payoff-improving trade, σi(v
′) < σi(v) is possible (as in

Example 2 in the text). But, by minimality, all proposals on which votes are traded must be

decided by minimal majority after trade. Hence |P̂ (v′)| < |P̂ (v)|, and since |P̂ (v)| ≤ K < ∞,

blocking trades on non-minimal majority proposals can happen at most a finite number of times.

Hence the logic of the proof of Theorem 1 applies here as well: for any R, the number of trades on

non-minimal majority proposals must be finite, and because score functions are bounded and the

number of voters is finite, so must be the number of trades on minimal majority proposals. Hence

trading always ends after a finite number of steps, and a Pivot-stable allocation of votes always

exists. Because the argument in the proof makes no restriction on R, the result holds for all R.
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To prove Propositions 3 and 4, we exploit a result from the literature21, restated in the following

Lemma.

Lemma . For any K, N , and z, the Condorcet winner, if it exists, can only be P(v0).

Proof. On any single proposal, the majority of the votes at v0 reflect the preferences of the majority

of the voters. For any number of proposalsm ∈ {1, ...,K}, consider the outcome P(v0,m
−) obtained

by deciding m proposals in the direction favored by the minority at v0, and the remainder K−m in

the direction favored by the majority. Consider the alternative outcome P(v0, (m− 1)−), obtained

by deciding one fewer proposal in favor of the minority at v0. By construction, P(v0, (m − 1)−)

must be majority-preferred to P(v0,m
−). Hence for any m ∈ {1, ...,K}, P(v0,m

−) cannot be the

Condorcet winner. But by varying m between 1 and K, P(v0,m
−) spans all possible P 6= P(v0).

Hence if the Condorcet winner exists, it can only be P(v0).

Proposition 3. If N = 3, then for all K and z, if the Condorcet winner exists, P(V∗) is a

singleton, and is the Condorcet winner.

Proof. By Lemma 5, if the Condorcet winner exists, it can only be P(v0). But then with N = 3

no trade can take place: if the Condorcet winner exists, v0 cannot be blocked. Thus P(V∗) equals

P(v0) and is the Condorcet winner.

Proposition 4. If K = 2, then for all N and z, P(V∗) is a singleton and is the Condorcet

winner, if the Condorcet winner exists. If P(V∗) 6= P(v0), a majority prefers P(V∗) to P(v0).

Proof. Suppose, with no loss of generality, that P(v0) = AB–both proposals pass. All members of

a blocking coalition must strictly gain from the trade. Hence any blocking trade must be such that

both proposals change direction, because pivotal voters trading away their vote on one proposal

must be compensated by moving to a winning position on the other proposal. It follows that along

any path of trades the only two possible outcomes are AB, at t = 0, 2, 4, .., and ∅–both proposals

fail–at t = 1, 3, 5, ... We know from Theorem 1 that P(V∗) is not empty. Hence P(V∗) ⊆ {AB,∅}.
Partition all voters into two sets of voters CAB and C∅ where i ∈ CAB ⇐⇒ AB �i ∅, that is, CAB

is composed of all voters who prefer AB to ∅; and i ∈ C∅ ⇐⇒ ∅ �i AB, that is, C∅ is composed

of all voters who prefer ∅ to AB.22 The two sets have cardinality NAB and N∅, respectively. Note

that blocking coalitions can only be formed within each set: for any path of trade, all members of

a blocking coalition at t even must belong to C∅, and at t odd must belong to CAB. Suppose first

NAB > N∅. Then at v0, CAB holds a total of NAB on each proposal, and C∅ a total of N∅ votes,

again on each proposal. Since NAB > N∅, on each proposal voters in CAB initially hold more votes

than voters in C∅. Since blocking trades must always take place within either CAB and C∅, this

relation is true at every step of the trading path. But then ∅ cannot be a Pivot-stable outcome,

because at any vote allocation vt where P(vt) = ∅, ∅ is blocked by CAB.

To see this, notice that because P(v0) = AB and NAB > N∅ it cannot be the case that all

21See Park (1967) and Kadane (1972).
22Ordering outcomes from most to least preferred, CAB includes voters with rankings

{{AB,A,B,∅},{AB,B,A,∅},{A,AB,∅, B},{B,AB,∅, A}}; C∅ includes voters with rankings
{{∅, A,B,AB},{∅, B,A,AB},{A,∅, AB,B},{B,∅, AB,A}}.
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1 2 3 4 5

A 2 −2 −1 1 −1

B 1 −1 −2 2 2

AB ∅ ∅ AB B
A B A B AB
B A B A ∅
∅ AB AB ∅ A

Table 8: No vote allocation is farsightedly stable relative to v0. An example.

voters in CAB prefer ∅ to A or A would have failed at v0. Similarly, it cannot be the case that all

voters in CAB prefer ∅ to B. Thus there must be at least one voter in CAB who prefers B to ∅ and

at least one voter in CAB who prefers A to ∅. It follows that CAB can always block vt by giving all

of its B votes to a voter in CAB who prefers B to ∅ and giving all of its A votes to a voter in CAB

who prefers A to ∅. Because such a blocking trade is always possible, at any vt reachable from v0,

it then follows that P(V∗) = {AB}. Identical logic shows that if NAB < N∅, then P(V∗) = {∅}.
Because N is odd, NAB = N∅ is impossible. Thus P(V∗) must always be a singleton.

By Lemma 5, only AB can be the Condorcet winner. Because P(v0) = AB, it must be the case

that AB is majority preferred to both A and B, and is the Condorcet winner if it is also majority

preferred to ∅, i.e. if NAB > N∅. But we just established that if NAB > N∅, P(V∗) = AB. Hence

if the Condorcet winner exists, P(V∗) is the Condorcet winner. If NAB < N∅, the Condorcet winner

does not exist. In such a case, P(V∗) = ∅, and, since NAB < N∅, P(V∗) is majority preferred to

P(v0), concluding the proof of the proposition.

Theorem 4. There exist K, N , and z such that no vote allocation is farsightedly stable relative

to v0.

Proof.

Consider the environment displayed in Table 8. The lower panel reports, in the column corre-

sponding to each voter, the voter’s ordinal preferences over the four possible outcomes. An outcome

in a cell is strictly preferred by that voter to all outcomes in lower cells.

Note that P(v0) = B. The proof is in two steps. We first show that there is a unique vote

allocation v that F-dominates v0, and v must be such that P(v) = A. We then show that v /∈ V∗F .

(1). By definition of D(v0), any v ∈ D(v0) must be such that P(v) 6= B. (i) Suppose there

exists some v′ ∈ D(v0) such that P(v′) = AB. Outcome AB is the least preferred alternative for

voters 2 and 3, so those two voters never trade as part of an F-chain to v′. Voter 5 ranks P(v0) = B

above AB; hence will not trade at v0. Therefore, at v0, on an F-chain to v′ such that P(v′) = AB,

the only possible first trade is between voters 1 and 4. But 1 and 4 have identical preferences, and

no trade between them can change the outcome. Hence no trade between them can advance the

F-chain: there cannot exist a v′ ∈ D(v0) such that P(v′) = AB. (ii) Similarly, there cannot exist a
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v′ ∈ D(v0) such that P(v′) = ∅: the voters’ preference rankings are such that only voters 2 and 3

can trade at v0 on an F-chain to any v′ such that P(v′) = ∅. But 2 and 3 have identical preferences

and cannot advance the F-chain. (iii) Is there some v′ ∈ D(v0) such that P(v′) = A? Voter 5 never

trades on such an F-chain. At v0, on an F-chain to v′ such that P(v′) = A, the only possible first

trade is between voters 1 and 3. They disagree on both proposals, and thus by trading can reach

any outcome. They can trade to any of the eight vote allocations shown below (where the number

in each cell indicates the number of votes 1 and 3 hold after the trade; all other voters hold one

vote):

1 3

A 1 1

B 2 0

1 3

0 2

1 1

1 3

0 2

2 0

1 3

2 0

2 0

1 3

2 0

1 1

1 3

0 2

0 2

1 3

1 1

0 2

1 3

2 0

0 2

The first three of these vote allocations do not change the outcome, and thus cannot advance

the F-chain.

The next two change the outcome to AB. If either of these trades occur at v0, then the only

subsequent trade from either of these two vote allocations on an F-chain to v′ such that P(v′) = A,

can only have 2 and 3 trading (because they are the only two voters who prefer A to AB; but 2

and 3 both have negative values for both proposals and therefore cannot advance the F-chain.

The next two possible vote trades between 1 and 3 will lead to the ∅ outcome. On an F-chain

to v′ such that P(v′) = A only 1 and 4 can gain from moving from ∅ to A; but 1 and 4 both have

positive values for both proposals and therefore cannot advance the F-chain.

Finally, consider the last possible vote allocation, which results when 1 trades her B vote for

3’s A vote, leading to the outcome A. Call this vote allocation v′, since v′ ∈ D(v0) and P(v′) = A.

Because we have ruled out all other possible allocations, D(v0) is a singleton: D(v0) = {v′}.

(2). But v′ /∈ V∗F : at v′ voter 2 can give a B vote to voter 4, in exchange for an A vote, and

reach the vote allocation v′′ depicted in Table 9, with P(v′′) = B. Both 2 and 4 prefer the outcome

B to A. The reasoning shows that v′ is not myopically stable, and therefore is not in the F-core.

1 2 3 4 5

A 2 2 0 0 1

B 0 0 2 2 1

Table 9: The vote allocation at v′′.

We have shown that v0 /∈ V∗F , since there exists v′ ∈ D(v0), and that all v ∈ D(v0) are such that

v /∈ V∗F , since D(v0) = {v′} and v′ /∈ V∗F . Hence the set D(v0) ∩ V∗F is empty: no vote allocation is

farsightedly stable relative to v0.

Proposition 7 If the Condorcet winner is an F0-stable outcome, then: (1) the Condorcet winner

is the only F0-stable outcome; (2) the set of F0-stable vote allocations V∗F (v0) is a singleton, and
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V∗F (v0) = {v0}.

Proof. Call VCW the set of Condorcet vote allocations. That is, v ∈ VCW ⇒ P(v) is the Condorcet

winner. Suppose v ∈ VCW ∩ V∗F (v0). Notice that if PF0(v) = P(v0), then v /∈ D(v0). By Lemma 5,

v0 ∈ VCW . Thus if v ∈ VCW ∩ V∗F (v0), it follows that v = v0, and v0 ∈ V∗F (v0) because no voter is

better off at v than at v0. Suppose there exists some other v′ /∈ VCW such that v′ ∈ V∗F (v0). Then

v′ ∈ D(v0). But then, there exists a vote allocation, v′ that dominates v0 and is not dominated

by any other, since v′ ∈ V∗F (v0). Hence v0 /∈ V∗F (v0), a contradiction. Hence it follows that

V∗F (v0) = {v0}.

In words: We know from Lemma 5 that if the Condorcet winner exists it must equal P(v0). It

then follows immediately that no other vote allocation yielding the Condorcet winner can farsight-

edly dominate v0, and thus if an F0-stable allocation yielding the Condorcet winner exists, it must

equal v0. But if v0 is F0-stable, no other allocation reachable from v0 can be F0-stable, because it

would have to dominate v0, and thus v0 could not be F0-stable. It follows that the set of F0-stable

equilibria must be a singleton and equal v0.

The following Corollary is immediate:

Corollary 2 The Condorcet winner can be an F0–stable outcome only if no vote trading takes

place.

Appendix B. Alternative notions of farsighted stability

We approach farsighted stability in the text using the forward looking extension of the core of a

game without side payments. Alternative notions could be explored. We briefly present two such

alternatives in this appendix.

1. The F-Bargaining Set

The farsighted bargaining set weakens the notion of the farsighted core by allowing dominated

allocations to belong to the set.

Formally:

Definition 15 A vote allocation v ∈ V is in the farsighted bargaining set, BF , if, for every v′ ∈ V
such that v′ F-dominates v, there exists some v′′ ∈ V such that v′′ F-dominates v′. That is, BF = {v|
D(v′) 6= ∅ ∀v′ ∈ D(v)}.

The farsighted bargaining set contains the core, and therefore is non-empty (by Proposition 5).

We can define the F-bargaining set reachable from v0, VB(v0):

Definition 16 A vote allocation v ∈ VB(v0) if and only if one of the following holds: either (1)

there exists v ∈ D(v0) ∩BF , or (2) D(v0) ∩BF = ∅ and v = v0.
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Proposition 8 v ∈ VB(v0) is non-empty for all v0, N , K, and z.

Clearly VB(v0) is never empty. The result is by construction but reflects the spirit of the concept:

if no vote allocation that dominates v0 belongs to the F-bargaining set (i.e. if D(v0) ∩ BF = ∅),

then v0 itself should be understood as belonging to F-bargaining set reachable from v0 –although

v0 may be dominated by some other allocations, none of these allocations is itself robust to further

credible domination.

Some, but not all of the results from Section 4 apply with this alternative definition. First note

that the definition of V∗F (v0) in the text (Definition 14) ensures that v ∈ V∗F (v0) =⇒ v ∈ VB(v0).

Therefore, it immediately follows that if N = 3 and the Condorcet winner exists, then it must

belong in VB(v0): the farsighted stability of the Condorcet winner with N = 3 is confirmed. The

other results, however, fail to extend to this alternative definition because VB(v0) can include vote

allocations that are neither in the farsighted core nor equal to v0. The definition of VB(v0) can be

strengthened to rule out such possibilities by replacing v ∈ D(v0)∩BF and v = v0 if D(v0)∩BF = ∅
by v ∈ D(v0) ∩ V∗F and v = v0 if D(v0) ∩ V∗F = ∅. With this stronger definition, non-emptiness is

still guaranteed, and Propositions 6 and 7 and Corollary 2 hold.

2. The von Neumann Morgenstern (NM) F-stable set

A second possible approach is to use a farsighted generalization of von Neumann-Morgenstern

stable sets. Defining and analyzing farsighted stable sets is much more involved than analyzing the

farsighted core and bargaining sets because the concept is defined as a set-valued fixed point in a

space with no natural topology.

Here we extend the definition of the NM farsightedly stable (NMF-stable) set VNM , originally

proposed by Harsanyi (1974) to our vote trading environment. Following Ray and Vohra (2015),

for any subset of vote allocations, V ⊆ V, define dom(V) as the set of vote allocations that are

farsightedly dominated by some allocation v ∈ V. A set of NMF-stable vote allocations VNM
has the property that no vote allocation in VNM is dominated by another vote allocation in VNM
(internal stability) and every feasible vote allocation not in VNM is dominated by at least one vote

allocation in VNM (external stability). Formally:

Definition 17 VNM ⊆ V is an NMF-stable set if VNM = V − dom(VNM ).

Note that the definition is set-based: in general, which allocations belong to the set depends

on the full set itself. Neither existence nor uniqueness are guaranteed. An additional difficulty is

that in practical applications verifying whether an allocation is F-stable requires positing the full

composition of the set–a difficult task.23

23Which is why most progress has been made in cases in which the NMF-set can be restricted a priori to be a
singleton (Mauleon et al. 2011, Ray and Vohra, 2015).
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As with the F-bargaining set and the F-stable set, one needs to extend the definition of NMF-

stable sets to require reachability from v0. Define domD(v0)(VNM ) as the set of allocations in D(v0)

that are F-dominated by some allocation in VNM .24 Then:

Definition 18 VNM (v0) is an NMF-stable set reachable from v0 if, given a set VNM , VNM (v0) =

D(v0)− domD(v0)(VNM ).

24Note that domD(v0)(VNM ) is defined with respect to VNM , not VNM (v0).

32



References

[1] Baron D. and J. Ferejohn, 1989, ”Bargaining in Legislatures”, American Political Science

Review, 83, 1181-1206.

[2] Bernholz, P., 1973, ”Logrolling, Arrow Paradox and Cyclical Majorities”, Public Choice, 15,

87-96.

[3] Buchanan, J. and G. Tullock, 1962, The Calculus of Consent, Ann Arbor: University of

Michigan Press.

[4] Casella, A., 2005, ”Storable Votes”, Games and Economic Behavior, 51, 391-419.

[5] Casella, A., A. Llorente-Saguer and T. Palfrey, 2012, ”Competitive Equilibrium in Markets for

Votes”, Journal of Political Economy, 120, 593-658.

[6] Casella, A. and T. Palfrey, 2016, ”An Experimental Study of Vote Trading”, Working Paper,

Columbia University.

[7] Chwe, M., 1994, ”Farsighted Coalitional Stability”, Journal of Economic Theory, 63, 299-325.

[8] Coleman, J., 1966, ”The Possibility of a Social Welfare Function”, American Economic Review,

56, 1105-1122.

[9] Dal Bo, E., 2007, ”Bribing Voters”, American Journal of Political Science, 51, 789–803.

[10] Dekel, E., M. Jackson, and A.Wolinsky, 2008, “Vote Buying: General Elections”, Journal of

Political Economy, 116, 351–380.

[11] Dekel, E., M. Jackson, and A.Wolinsky, 2009, “Vote Buying: Legislatures and Lobbying”,

Quarterly Journal of Political Science, 4, 103–128.

[12] Diamantoudi, E. and L. Xue, 2003, ”Farsighted stability in hedonic games”, Social Choice and

Welfare, 21: 39-61

[13] Downs, A., 1957, An Economic Theory of Democracy, New York: Harper.

[14] Downs, A., 1961. ”Problems of Majority Voting: In Defense of Majority Voting”, Journal of

Political Economy, 69, 192-199.

[15] Dutta, B. and R. Vohra, 2015, ”Rational Expectations and Farsighted Stability”, Working

Paper, Brown University.

[16] Feldman, A., 1973, ”Bilateral Trading Processes, Pairwise Optimality, and Pareto Optimality”,

Review of Economic Studies, 40, 463-73.

[17] Feldman, A., 1974, ”Recontracting Stability”, Econometrica, 42, 35-44.

33



[18] Ferejohn, J., 1974, ”Sour Notes on the Theory of Vote Trading”, Social Science Working Paper

No.41, California Institute of Technology.

[19] Gale D. and L. Shapley, 1962, ”College Admissions and the Stability of Marriage”, American

Mathematical Monthly, 69, 9-15.

[20] Goeree J. and J. Zhang, 2017, ”One man, one bid”, Games and Economic Behavior, 101,

151-171.

[21] Green, J., 1974, ”The Stability of Edgeworth’s Recontracting Process”, Econometrica, 42,

21-34.

[22] Groseclose T. and J. Snyder, 1996, “Buying Supermajorities”, American Political Science

Review, 90, 303-315.

[23] Haefele, E., 1971. ”A Utility Theory of Representative Government”, American Economic

Review, 61, 350-367.

[24] Harsanyi, J., 1974. ”An Equilibrium-point Interpretation of Stable Sets and a Proposed Alter-

native Definition”, Management Science, 20, 1472-95.

[25] Hortala-Vallve R., 2012, ”Qualitative Voting”, Journal of Theoretical Politics, 24, 526-554.

[26] Jackson, M. and H. Sonnenschein, 2007, ”Overcoming Incentive Constraints by Linking Deci-

sions, Econometrica, 75, 241–257.

[27] Jackson, M. and A. Watts, 2002, ”The Evolution of Social and Economic Networks”, Journal

of Economic Theory, 106, 265-295.

[28] Jackson, M. and A. Wolinsky, 1996, ”A Strategic Model of Social and Economic Networks”,

Journal of Economic Theory, 71, 44-74.

[29] Kadane, J., 1972, ”On the Division of the Question”, Public Choice, 13, 47-54.

[30] Koehler D., 1975, ”Vote Trading and the Voting Paradox: A Proof of Logical Equivalence”,

American Political Science Review, 69, 954-960.

[31] Lalley, S. and G. Weyl, 2016, ”Quadratic Voting”, https://ssrn.com/abstract=2003531.

[32] Maschler, M., 1992, ”The Bargaining Set, Kernel, and Nucleolus”, in The Handbook of Game

Theory, Vol. 1, R. Aumann and S. Hart eds., 591-667.

[33] Mauleon, A., V. Van Netelbosch and W. Vergote, 2011, ”von Neumann-Morgenstern farsighted

stable sets in two-sided matching”, Theoretical Economics, 6, 499-521.

[34] Miller, N., 1977, ”Logrolling, Vote Trading and the Paradox of Voting: A Game Theoretical

Overview”, Public Choice, 30, 51-75.

34



[35] Moulin, H., 1988, Axioms of Cooperative Decision Making, Cambridge, UK: Cambridge Uni-

versity Press.

[36] Myerson, R., 1993, ”Incentives to Cultivate Favored Minorities Under Alternative Electoral

Systems”, American Political Science Review, 87, 856-869.

[37] Park, R.E., 1967, ”The Possibility of a Social Welfare Function. Comment”, American Eco-

nomic Review, 57, 1300-1304.

[38] Philipson, T. and J. Snyder, 1996, ”Equilibrium and Efficiency in an Organized Vote Market”,

Public Choice, 89, 245-265.

[39] Ray, D. and R. Vohra, 2015. ”The Farsighted Stable Set”, Econometrica, 83, 977-1011.

[40] Riker, W. and S. Brams, 1973, ”The Paradox of Vote Trading”, American Political Science

Review, 67, 1235-1247.

[41] Roth, A. and M. Sotomayor, 1990, Two-Sided Matching: A Study in Game-Theoretic Modelling

and Analysis, Cambridge, UK: Cambridge University Press.

[42] Roth A. and J. Vande Vate, 1990, ”Random Paths to Stability in Two-Sided Matching”,

Econometrica, 58, 1475-1480.

[43] Schwartz, T., 1975, ”Vote Trading and Pareto Efficiency”, Public Choice, 24, 101-110.

[44] Stratmann, T., 1992, ”The Effects of Logrolling on Congressional Voting”, American Economic

Review, 82, 1162-1176.

[45] Tullock, Gordon, 1959, ”Problems of Majority Voting”, Journal of Political Economy, 67,

57l-79.

[46] Tullock, Gordon, 1961, ”Problems of Majority Voting: Reply to a Traditionalist”, Journal of

Political Economy, 69, 200-203.

[47] Tullock, Gordon, 1970, ”A Simple Algebraic Logrolling Model”, American Economic Review,

60, 419-426.

[48] Watts, A., 2001, ”A Dynamic Model of Network Formation”, Games and Economic Behavior,

34, 331-341.

[49] Wilson, R., 1969, ”An Axiomatic Model of Logrolling”, American Economic Review, 59, 331-

341.

[50] Xefteris D. and N. Ziros, 2017, ”Strategic Vote Trading in Power Sharing Systems”, American

Economic Journal: Microeconomics, 9, 76-94.

35


