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Abstract

We use laboratory experiments to test models of ‘rational inattention’, in which

people acquire information to maximize utility from subsequent choices net of infor-

mation costs. We show that subjects adjust their attention in response to changes in

incentives a manner which is broadly in line with the rational inattention model but

which violates models such as random utility in which attention is fixed. However, our

results are not consistent with information costs based on Shannon entropy, as is often

assumed in applied work. We find more support for a class of ‘posterior separable’cost

functions which generalize the Shannon model.

1 Introduction

Attention is a scarce resource. The impact of attentional limits has been identified in many

important economic settings.1 The importance of limits on attention has lead to a wide range
∗We thank in particular Andrew Caplin, who was instrumental in the development of this research agenda

and many of the ideas embodied in this paper, and Stephen Morris and Isabel Trevino who were involved in
the design of Experiment 4 as part of a separate project (see Dean et al. [2016]). Also John Leahy, Daniel
Martin, Filip Matejka, Pietro Ortoleva and Michael Woodford for their constructive contributions, as well as
the members of the Cognition and Decision Lab at Columbia University and numerous seminar participants.
We acknowledge the Junior Faculty Summer Research Support Grant from Columbia University which
provided funding for the project. Research funds were also provided by Princeton University and New York
University. This paper reports on experiments similar to those in Caplin and Dean [2013] and Caplin and
Dean [2014] and subsumes those parts of that paper that are common.
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1For example, shoppers may buy unnecessarily expensive products due to their failure to notice whether

or not sales tax is included in stated prices (Chetty et al. [2009]). Buyers of second-hand cars focus their
attention on the leftmost digit of the odometer (Lacetera et al. [2012]). Purchasers limit their attention to
a relatively small number of websites when buying over the internet (Santos et al. [2012]).
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of modeling approaches aimed at understanding behavior under such constraints. Particu-

larly influential are models of ‘rational inattention’2 which assume that people choose the

information they attend to in order to maximize the expected utility of subsequent choices

net of informational costs.3

The widespread use of the rational inattention model leads to a number of natural research

questions. First, do people in fact actively adjust their attention in response to incentives?

Second, do they do so in line with the predictions of the rational inattention model? Third,

what do the costs of attention look like? Fourth, how much heterogeneity in information

costs is there in the population?

In this paper we use a sequence of four laboratory experiment to provide answers to these

questions. The basic set up is a simple information acquisition task in which subjects are

presented with a number of balls on the screen which can either be red or blue. They must

then choose between different actions, the payoff of which depend on the fraction of balls

which are red (which we will call the ‘state of the world’). The prior probability of each

state is known to the subject. There is no time limit or extrinsic cost of information in the

experiment, so if subjects face no intrinsic cost of information acquisition the experiment

would be trivial: they would simply ascertain the number of red balls on the screen and

choose the best action given this state. As we shall see, subjects in general do not behave

in this way.

Within this setup the four experiments vary different features of the decision problem,

including the range of available actions, the value of correct choice and the prior probability

of possible states. By repeatedly exposing the subject to each decision problem we can collect

‘state dependent stochastic choice’(SDSC) data, or the probability that each action is chosen

in each state. Such data is particularly useful for testing models of rational inattention, and

learning about attention cost (see Caplin and Dean [2015]).

In order to answer the four questions above, we rely on several recent theoretical advances.

Caplin and Martin [2015b] and Caplin and Dean [2015] provide necessary and suffi cient con-

ditions for SDSC to be consistent with a general model of rational inattention which is

agnostic about information costs (henceforth the general model). The No Improving Action

Switches (NIAS) condition ensures that choice of action is optimal given the information

2We will use the term ‘rational attention’to describe this entire model class, while recognizing that others
use this term to refer to the specific case when costs are based on the Shannon mutual information between
prior and posterior beliefs. Our definition covers almost all models of costly information acqusition, as we
discuss in section 2.2. We refer to the latter as the ‘Shannon model’.

3Recent examples include Sims [2003], van Nieuwerburgh and Veldkamp [2009], Hellwig et al. [2012],
Matejka and McKay [2015] and Caplin and Dean [2015].
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gathered, while the No Improving Attention Cycle (NIAC) condition ensures that the allo-

cation of attention across decision problems can be rationalized by some cost function. Using

this ‘revealed cost’approach, bounds can be placed on the costs associated with different

information structures.

Complementary to this agnostic approach to attention costs, we also ask whether our data

is in line with specific cost functions. Here we focus on costs which are linear in Shannon mu-

tual information (henceforth the Shannon model), which was introduced to the economics

literature by Sims [2003], and has proved extremely popular in subsequent empirical and

theoretical work.4 The use of mutual information costs has been justified on information

theoretic grounds, related as they are to the average number of signals needed to generate a

given set of posterior beliefs (see Sims [2003]). Compared to the general model, the Shannon

model is extremely restrictive, with only a single parameter related to the marginal cost of

information. Recent works by Matejka and McKay [2015] and Caplin et al. [2017]5 have

highlighted a number of behavioral regularities implied by the Shannon model: The Locally

Invariant Posteriors (LIP) and Invariant Likelihood Ratio (ILR) conditions restrict how op-

timal information acquisition responds to changes in prior beliefs and incentives respectively.

The Shannon model also implies that behavior is invariant to the addition or subtraction of

states which are identical in terms of the payoffs of all available actions - a property labeled

Invariance Under Compression (IUC) by Caplin et al. [2017]. This property means the model

is incommensurate with any notion of ‘perceptual distance’, by which some states are easier

to differentiate than others. Because the Shannon model is so restrictive, we also consider

an intermediate class of ‘posterior separable’models, introduced by Caplin and Dean [2013],

which retain the LIP feature of the Shannon models, but relaxes other implications. Models

in this class have recently been used for several economic applications (see for example Clark

[2016] and Morris and Strack [2017]).

Experiment 1 is designed to distinguish rational inattention from models in which atten-

tion is unresponsive but choice is stochastic - including random utility (Block and Marschak

[1960]) and signal detection theory (Green and Swets [1966]). The key observation is that

these alternative models imply the property of Monotonicity: adding alternatives to the

choice set cannot increase the probability of choosing previously available options. This

property is not implied by models of rational inattention, and Matejka and McKay [2015]

describe a scenario in which informational spillovers could lead a rationally inattentive de-

cision maker to violate monotonicity. We provide an experimental implementation and find

4See for example the application of the model to investment decisions (e.g Mondria [2010]), global games
(Yang [2015]), and pricing decisions (Mackowiak and Wiederholt [2009], Matějka [2016], Martin [2017]).

5See also Caplin and Dean [2013].
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that monotonicity is strongly rejected by the data in a manner broadly consistent with ra-

tional inattention (as characterized by the NIAS and NIAC conditions), indicating the need

for models in this class.

Experiment 2 examines the response of information acquisition to incentives using a

simple two state/two action design in which we vary the benefit from choosing the correct

action. This provides a simple test of the NIAC and NIAS conditions, in an admittedly

undemanding setting. The aggregate data strongly supports both conditions, and at the

individual level 81% of subjects exhibit no significant violation of either. This implies that

there is a notion of information costs which rationalizes the behavior of the majority of

subjects. We find a high degree of heterogeneity in these costs across subjects. We also ask

whether the responsiveness of our subjects to changes in incentives is consistent with the

Shannon model, and find that the answer is largely negative. Both in the aggregate and

at the individual level we find that subjects typically respond less strongly than predicted

by Shannon costs. Behavior is better matched by a simple, two parameter extension of the

Shannon model in the posterior separable class.

Experiment 3 looks at the reaction of behavior to changes in prior beliefs, again in a

simple two state/two action setting. This provides us both with a more sophisticated test of

the NIAS condition, and a test of the LIP condition which characterizes the class of posterior

separable model. The former condition is largely satisfied, both at the aggregate and the

individual level - in particular we find little evidence of base rate neglect in our subject’s

choices. The evidence for the LIP condition is more mixed, but some aspects of the data do

agree with this more stringent condition.

Our final experiment tests IUC using a design with multiple states but only two acts to

choose from, the payoff of which is the same in many different states. The Shannon model

implies that behavior should be the same in all states in which both actions pay the same

amount. This is incommensurate with the idea of a perceptual distance, by which some states

are easier to differentiate between than others. We show that, in our baseline experimental

set up which has a natural notion of perceptual distance, IUC performs poorly. However, in

an alternative setting based on letter recognition, it provides a reasonable approximation of

behavior.

Our paper provides an empirical counterpart to the large recent theoretical literature on

limited attention, which includes both the rational inattention models discussed above and

other approaches in which attention is not modelled as the result of an optimizing process

(for example Masatlioglu et al. [2012], Manzini and Mariotti [2014], Lleras et al. [2017]). To
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our knowledge there is surprisingly little experimental work testing such models. Notable

exceptions include Gabaix et al. [2006], Caplin et al. [2011], Taubinsky [2013] and Khaw et al.

[2016]. These papers are designed to test models which are very different to those we consider

here, and as such make use of very different data. Pinkovskiy [2009] and Cheremukhin et al.

[2015] fit the Shannon model using data on stochastic choice between lotteries, but do not

test the sharp behavioral predictions from that model as we do here. Bartoš et al. [2016]

report the results of a field experiment which supports rationally inattentive behavior in

labor and housing markets. More broadly, our work fits in to a recent move to use richer

data to understand the process of information acquisition (for example Krajbich et al. [2010],

Brocas et al. [2014], Polonio et al. [2015], and Caplin and Martin [2015a]). In contrast to the

relatively small literature in economics, there is a huge literature in psychology that examines

behavior in perceptual tasks which are similar to some of our experiments, though the data

is analyzed in very different ways (for example see Ratcliff et al. [2016] for a recent review,

and Krajbich et al. [2011] for an application to economic decision making). We discuss our

relationship to these papers in section 6.

The paper is organized as follows. Section 2 describes the theory underlying our exper-

iments. Section 3 describes the experimental design in detail. Section 4 provides results,

section 5 provides additional discussion, and section 6 describes the related literature.

2 Theory

2.1 Set-Up and Data

For our discussion of the testable implications of the rational inattention model we use the

set up and notation of Caplin and Dean [2015].

We consider a decision maker (DM) who chooses among actions, the outcomes of which

depend on which of a finite number of states of the world ω ∈ Ω occurs. The utility of action

a in state of the world ω is denoted by u(a, ω).

A decision problem is defined by a set of available actions A and a prior over states of

the world µ ∈ ∆(Ω), both of which we assume can be chosen by the experimenter. The data

observed from a particular decision problem is a state dependent stochastic choice (SDSC)

function, which describes the probability of choosing each available action in each state of the

world. For a decision problem (µ,A) we use P(µ,A) to refer to the associated SDSC function,

with P(µ,A)(a|ω) the probability that action a ∈ A was chosen in state ω ∈ Ω (where it will
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not cause confusion, we will suppress the subscript on P ). Note that a SDSC function also

implies a posterior probability distribution over states, γa, associated with each action a ∈ A
which is chosen with positive probability. By Bayes’rule we have

γa(ω) = P (ω|a) =
µ(ω)P (a|ω)∑

ω′∈Ω µ(ω′)P (a|ω′) . (1)

This construct will be useful in testing the various theories we discuss below.

2.2 The Rational Inattention Model

The rational inattention model assumes that the DM can gather information about the state

of the world prior to choosing an action. Importantly, they can choose what information to

gather conditional on the decision problem they are facing. The DM must trade off the costs

of information acquisition against the benefits of better subsequent choices. The rational

inattention model assumes that the DM solves this trade off optimally.

In each decision problem, the DM chooses an information structure: a stochastic mapping

from objective states of the world to a set of subjective signals. While this formalization

sounds somewhat abstract, its subsumes the vast majority of models of optimal information

acquisition that have been proposed (see Caplin and Dean [2015]). Note that we assume

that the subject’s choice of information structure is not observed, and so has to be inferred

from their choice data.

Having selected an information structure, the DM can condition choice of action only on

these signals. For notational convenience we identify each signal with its associated posterior

beliefs γ ∈ Γ, which is equivalent to the subjective information state of the DM following

the receipt of that signal. Feasible information structures satisfy Bayes’rule, so for any prior

µ the set of possible structures Π(µ) comprises all mappings π : Ω→∆(Γ) that have finite

support Γ(π) ⊂ Γ and that satisfy Bayes’rule, meaning that for all ω ∈ Ω and γ ∈ Γ(π),

γ(ω) = Pr(ω|γ) =
Pr(ω ∩ γ)

Pr(γ)
=

µ(ω)π(γ|ω)∑
υ∈Ω

µ(υ)π(γ|υ)
,

where π(γ|ω) is the probability of signal γ given state ω and γ(ω) is the probability of state

ω conditional on receiving signal γ.

We assume that there is a cost associated with the use of each information structure,
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with K(µ, π) denoting the cost of information structure π given prior µ. We define G as

the gross payoff of using a particular information structure in a particular decision problem.

This is calculated assuming that actions are chosen optimally following each signal,

G(µ,A, π) ≡
∑
γ∈Γ(π)

[∑
ω∈Ω

µ(ω)π(γ|ω)

][
max
a∈A

∑
ω∈Ω

γ(ω)u(a, ω)

]
.

Here the first bracketed term is the probability of each signal, and the second is the maximum

achievable expected utility from alternatives in A given the resulting beliefs.

The rational inattention model assumes that the decision maker choose actions in order to

maximize utility given information, and chooses information structures to maximize utility

net of costs, i.e.

G(µ,A, π)−K(µ, π)

We do not a priori rule out the possibility that the cost of some information structures is

infinite, meaning that this formalization can cope with models in which the DM is restricted

to choosing certain types of information structure (for example normal signals).6 Note the

cost function K is essentially a high-dimentional free parameter in this model.

Caplin and Dean [2015] provide necessary and suffi cient conditions on SDSC data such

that there exists some cost function which rationalizes the observed pattern of behavior. We

call this the general model of rational inattention. TheNo Improving Action Switches (NIAS)

condition, introduced by Caplin and Martin [2015b], ensures that choices are consistent with

effi cient use of whatever information the DM has. It states that, for any action a which

is chosen with positive probability, it must be that a maximizes expected utility given γa

- the posterior distribution associated with that act. The No Improving Attention Cycles

(NIAC) condition ensures that choice of information itself is rationalizable according to some

underlying cost function. It relies on the concept of a revealed information structure, which

can be recovered from the data by assuming that each chosen action is associated with exactly

one signal.7 Essentially, NIAC states that the total gross value of information (measured by

G) in a collection of decision problems cannot be increased by switching revealed information

structures between those problems.

In the interests of brevity, we do not provide a formal definition of NIAS or NIAC here

6Though we do rule out costs being infinte for all information costs so that optimization is well defined.
7Note that we do not require that this is true in the underlying model. Caplin and Dean [2015] show

that constructing a revealed information structure in this manner is enough to test all models in the rational
inattention class.
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(we refer the interested reader to Caplin and Dean [2015]). Instead we will describe in

section 3 how these conditions apply to our specific experiments. However, we highlight one

important structural feature: because the general model allows costs to be indexed by priors

in an arbitrary way, it puts no restriction on behavior as prior changes, only as the set of

available actions change.

We emphasize that the flexibility in the choice of the function K means that general

model includes as special cases almost all models of optimal costly information acquisition

that have been discussed in the literature, including those in which agents can either pay to

receive information or not,8 those that apply additive normal noise to the agent’s information

and then allows them to pay a cost to decrease the variance of that noise,9 or those in which

the decision maker chooses a partition structure on the state space.10 See Caplin and Dean

[2015] for a discussion.

2.2.1 Rational Inattention vs Other Models of Stochastic Choice

Rational inattention is, of course, not the only model which allows for stochasticity in choice.

Two highly influential alternatives are the random utility model (Block and Marschak [1960],

McFadden [1974], Gul and Pesendorfer [2006]) and Signal Detection Theory (Green and

Swets [1966]). Here we describe how these can be differentiated from rational inattention.

The random utility model (RUM) assumes that people have many possible utility func-

tions which may govern their choice. On any given trial one of these utility functions is

selected according to some probability distribution, and the DM will choose in order to max-

imize that function. Stochasticity therefore derives from changes in preferences, rather than

noise in the perception of the state of the world.

Typically the RUM has not been applied to situations in which there is an objective,

observable state of the world, and there are many possible ways that the model could be

adapted to such a situation.11 However, as long as we maintain the assumption that the DM

does not actively change their choice of information in response to the decision problem, all

variants of the RUM will imply the property of Monotonicity. This states that adding new

alternatives to the choice set cannot increase the probability of an existing alternative being

chosen:
8For example Grossman and Stiglitz [1980], Barlevy and Veronesi [2000] and Reis [2006].
9For example Verrecchia [1982] and Hellwig et al. [2012] .
10For example Robson [2001] and Ellis [2013].
11For example, the DM could be fully informed about the underlying state, have no information about the

state, or receive a noisy signal regarding the state.
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Definition 1 A SDSC satisfies Monotonicity if, for every µ ∈ ∆(Ω), A ⊂ B, ω ∈ Ω and

a ∈ A
P(µ,A)(a|ω) ≥ P(µ,B)(a|ω)

That Monotonicity is a necessary property of data generated by random utility models is

intuitively obvious: Adding new alternatives to a set A can only (weakly) reduce the set of

utility functions for which any a ∈ A is optimal. However, Monotonicity is not implied by
rational inattention models, as illustrated by Matejka and McKay [2015]. The introduction

of a new act can increase the incentives to information acquisition, which may in turn lead the

DM to learn that an existing act was of high value. Matejka and McKay [2015] demonstrate

that the Shannon model will always generate a violation of Monotonicity across some decision

problems. We make use of this insight in Experiment 1.

Signal Detection Theory (SDT) is popular model in the psychological literature on per-

ception and choice. Essentially it assumes that people receive a noisy signal about the state

of the world, then choose actions optimally given subsequent beliefs. As such, it is a special

case of the general model in which the costs of all but one information structure are infi-

nite. A subject behaving according to SDT will therefore satisfy NIAC and NIAS. However,

they will also satisfy Monotonicity: as information selection cannot adjust, the only way

that adding a new option can affect choice is by being chosen instead of one of the existing

options upon the receipt of some signal. Thus a violation of Monotonicity rules out SDT as

well as random utility.

2.3 The Shannon Model

The general model is completely agnostic about the form of information costs.12 However,

for many applied purposes, specific cost functions are assumed. One of the most popular

approaches is to base costs on the Shannon mutual information between states and signals.

Introduced to the economics literature by Sims [2003], Shannon costs can be justified on

axiomatic or information theoretic grounds, and have been widely applied in the subsequent

literature.

Mutual information costs have the following form

Ks(µ, π) = −κ

 ∑
γ∈Γ(π)

π(γ)H(γ)−H(µ)


12Other than assuming that they are additively separable from the utility gained from choice of action.
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where π(γ) =
∑

ω∈Ω µ(ω)π(γ|ω) is the unconditional probability of signal γ and H(γ) =∑
ω∈−γ(ω) ln γ(ω) is the Shannon entropy of distribution γ.13 Mutual information can

therefore be seen as the expected reduction in entropy due to the observation of signals from

the information structure.

Clearly, the Shannon model puts much more structure on information costs than the

general model as it has essentially one degree of freedom: the marginal cost of mutual

information governed by κ. This in turn means that the Shannon model puts much tighter

restrictions on behavior than the general model. These restrictions have been discussed in

several recent papers (particularly Caplin and Dean [2013], Matejka and McKay [2015] and

Caplin et al. [2017]). In this paper we shall concern ourselves with three implications of

the Shannon model: Invariant Likelihood Ratio, Locally Invariant Posteriors and Invariance

Under Compression.

The Invariant Likelihood Ratio (ILR) property (Caplin and Dean [2013]) states that for

any two chosen actions, the posterior probabilities about a particular state conditional on

those actions depend only on the relative payoffs of those actions and information costs

γa(ω)

γb(ω)
=

exp(u(a, ω)/κ)

exp(u(b, ω)/κ)

As we shall see in the discussion of experiment 2 below, this puts tight restrictions on

the way in which information acquisition can change with the rewards for doing so.

The Locally Invariant Posterior (LIP) property states that local changes in prior beliefs do

not lead to changes in optimal posterior beliefs.14 Specifically, if, for some decision problem

(µ,A), the associated SDSC reveals some set of posteriors {γa}a∈A, and we change the prior
to some µ′ in such a way that these posteriors are still feasible (i.e. µ′ is in the convex hull

of {γa}a∈A), the LIP property states that precisely these posteriors should also be used in
the decision problem (µ′, A). We will test this proposition in experiment 3.

ILR shows that, according to the Shannon model, posterior beliefs depend only of the

payoffs of actions in a particular state, not on any other features of the state. This implies

that behavior should not be affected by adding or subtracting states which are identical in

payoff terms for all acts. Caplin et al. [2017] show that this ‘Invariance Under Compres-

sion’property fully characterizes the Shannon model within a the broader class of posterior

separable models described below. Behaviorally, one implication of this is that the Shan-

13Recall that we identify a signal with its resulting posterior ditribution.
14Again, see Caplin and Dean [2013] and Caplin et al. [2017] for further details.
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non model lacks any notion of ‘perceptual distance’: that some states might be harder to

differentiate than others. We test this implication in experiment 4.

2.4 Posterior Separable Information Costs

So far we have considered only the general model, with completely unconstrained costs, and

the Shannon model, in which costs are completely pinned down. An intermediate class of

models, introduced in Caplin and Dean [2013], is defined by ‘posterior separable’information

costs. These models keep the structure of Shannon mutual information, but relax the precise

functional form. Specifically, posterior separable cost functions are those that can be written

as

KT (µ, π) =

 ∑
γ∈Γ(π)

π(γ)T (γ)− T (µ)


for some strictly convex function T.15 Posterior separable cost functions satisfy LIP, but

not necessarily ILR or IUC. They can therefore allow for different elasticities of attention

with respect to incentives as well as the possibility of different perceptual differences between

states.

One type of posterior separable cost function that we will fit to the experimental data is

given by the parameterized class T{ρ,κ} ∈ KPS:

T{ρ,κ}(γ) =


−κ
(∑M

m=1 γm

[
γ1−ρm

(ρ−1)(ρ−2)

])
if ρ 6= 1 and ρ 6= 2;

−κ
(∑M

m=1 γm ln γm

)
if ρ = 1.

−κ
(∑M

m=1 γm
ln γm
γm

)
if ρ = 2.

,

were γm is the posterior probability of state m. If there are only two states of the world,

derivatives with respect to γ obey,

∂T{ρ,κ}(γ)

∂γ1

=

{
κ
(
γ1−ρ1 −(1−γ1)1−ρ

(ρ−1)

)
if ρ 6= 1;

κ (ln γ1 − ln(1− γ1)) if ρ = 1.

∂2T{ρ,κ}(γ)

∂ (γ1)2 = κ
(
γ−ρ1 + (1− γ1)−ρ

)
15In Caplin et al. [2016] this class of models is refered to as ‘uniformly posterior separable’to differentiate

them from a broader class of models in which the function T is allowed to vary with the prior.
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We use this class of functions because they provide a simple and easy to estimate way of

generalizing the Shannon model to allow for extra flexibility in the response of attention

to incentives, similar to the way that constant relative risk aversion generalizes log utility:

note that the second derivative of these costs functions is continuous in ρ, with the Shannon

entropy cost function fitting smoothly into the parametric class at ρ = 1.

3 Experimental Design

3.1 Set Up

We now introduce our experimental design which produces state dependent stochastic choice

data for each subject.

Figure 1: Typical Screenshot

In a typical question in the experiment, a subject is shown a screen on which there are

displayed 100 balls, some of which are red and some of which are blue. The state of the
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world is determined by the number of red balls on the screen. Prior to seeing the screen,

subjects are informed of the probability distribution over such states. Having seen the screen,

they choose from a number of different actions whose payoffs are state dependent. As in

the theory, a decision problem is defined by this prior distribution and the set of available

actions. Figure 1 shows a typical screenshot from the experiment.

A subject faces each decision problem multiple times, allowing us to approximate their

state dependent stochastic choice function. In any given experiment, the subject faces several

different problems. All occurrences of the same problem are grouped, but the order of the

problems is block-randomized. At the end of the experiment, one decision problem is selected

at random for payment.

There are several things to note about our experimental design. First there is no external

limit (such as a time constraint) on a subject’s ability to collect information about the state

of the world. If they so wished, subjects could determine the state with a very high level of

precision in each question by precisely counting the number of red balls - a very small number

of subjects do just this. We are therefore not studying hard limits to a subject’s perceptual

ability to determine the state, as is traditional in many psychology experiments (see section

6 for a discussion). At the same time, there is no extrinsic cost to the subject of gathering

information. Therefore the extent to which subjects fail to discern the true state of the world

is due to their unwillingness to trade cognitive effort and time for better information, and

so higher payoffs.16

Second, in order to estimate the state dependent stochastic choice function we treat

the multiple times that a subject faces the same decision making environment as multiple

independent repetitions of the same decision problem. To prevent subjects from learning to

recognize patterns, we randomize the position of the balls. The implicit assumption is that

the perceptual cost of determining the state is the same for each possible configuration of

balls. We discuss this assumption further in section 4.1.

Third, in experiments where it is important, we pay subjects in ‘probability points’rather

than money - i.e. subjects are paid in points which increase the probability of winning a

monetary prize. We do so in order to get round the problem that utility itself is not directly

observable. This is not a problem if utility is linearly related to the quantity of whatever

we use to pay subjects. Expected utility theory implies that utility is linear in probability

points but not monetary amounts.

16Subjects had a fixed number of tasks to complete during the course of the experiment. They were told
that when they had completed the experiment they had to stay in the lab until all subjects had finished the
experiment.
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An example of the experimental instructions can be found in the online appendix.

3.2 Experiment 1: Testing for Responsive Attention

Experiment 1 is designed to elicit violations of Monotonicity, which therefore also violate

the predictions of the RUM and SDT. Based on a thought experiment discussed in Matejka

and McKay [2015], the design requires subjects to take part in two decision problems (DP)

described in table 1 below. Payment was in probability points with a prize of $20. Each

subject faces 75 repetitions of each DP.

Table 1: Experiment 1

Payoffs

DP U(a, 1) U(a, 2) U(b, 1) U(b, 2) U(c, 1) U(c, 2)

1 50 50 b1 b2 n/a n/a

2 50 50 b1 b2 100 0

The structure of the two DP is as follows. There are two equally likely states of the world

- 1 and 2 (represented by 49 and 51 red balls respectively). In DP 1, the subject has the

choice between the sure-thing option a, which pays 50 probability points, and an option b

which pays off less than a in state 1, but more in state 2 (i.e. b1 < 50 < b2). However, b1

and b2 are chosen to be relatively close to 50. We used 4 different values for b1 and b2 as

described in table 2.

Table 2: Treatments for Exp. 1

Treatment Payoffs

b1 b2

1 40 55

2 40 52

3 30 55

4 30 52

The incentive for gathering information in DP 1 is low. The subject can simply choose a

and guarantee that they will receive 50 points. If they try to determine the state then half

the time they will find out that it is highly likely to be 1, in which case a is better than

b. Even if they do find out that the state is highly likely to be 2 the additional payoff over

simply choosing a is low. Thus, for many information cost functions, the optimal strategy
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for DP 1 will be to remain uninformed and select a.

In DP 2, the option c is added. This increases the value of information acquisition, as

c pays a high number of points in state 1 and a low number in state 2. Thus, the addition

of c may lead subjects to identify the true state with a high degree of accuracy. However,

having done so, half the time they will determine that the state is in fact 2, in which case b

is the best option. Thus, there is potentially a ‘spillover’effect of adding c to the choice set

which is to increase the probability of selecting b. It is this violation of monotonicity we will

look for in the data. Matejka and McKay [2015] show that, for a DM with Shannon costs,

such violations are guaranteed for some parameterization of this class of decision problem.

Experiment 1 also provides a first test for the NIAS and NIAC conditions which charac-

terize the general model. Recall that the NIAS condition requires that subjects make optimal

choices given their revealed posteriors. So, for example, at the posteriors γa from DP 1 it

must be the case that the expected utility of a is higher than that of b This implies that

γa1(1)50 + γa1(2)50 ≥ γa1(1)b1 + γa1(2)b2 ⇒

µ(1)P1(a|1)

P1(a)
50 +

µ(2)P1(a|2)

P1(a)
50 ≥ µ(1)P1(a|1)

P1(a)
b1 +

µ(2)P1(a|2)

P1(a)
b2 ⇒

P1(a|1)(50− b1) + P1(a|2)(50− b2) ≥ 0

where Pi is the SDSC data generated by DP i.

In DP 1 the NIAS conditions imply two comparisons which can be collapsed into a single

inequality. In DP 2 there are six inequalities to check, not all of which will necessarily bind.

The derivation of these conditions is described in appendix A1 and summarized in table 3.

Table 3: NIAS tests for Experiment 1

DP Comparison Condition

1 N/A P1(a|1)(50− b1) + P 1(a|2)(50− b2)− (100− (b1 + b2))≥ 0

2 a vs b P2(a|1)(50− b1) + P 2(a|2)(50− b2) ≥ 0

2 a vs c P2(a|2)− P 2(a|1) ≥ 0

2 b vs a P2(b|1)(b1−50) + P 2(b|2)(b2−50) ≥ 0

2 b vs c P2(b|1)(b1−100) + P 2(b|2)b2≥ 0

2 c vs a P2(c|1)− P 2(c|2) ≥ 0

2 c vs b P2(c|1)(100− b1)− P 2(c|2)b2≥ 0

NIAC is the condition that guarantees that behavior can be rationalized by an underlying
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cost function. It states that total gross surplus (measured by the function G) cannot be

increased by switching the assignment of information structures from those revealed in the

data: i.e. using the information structure revealed in DP1 in DP2 and visa versa (see Caplin

and Dean [2015] for further details). In appendix 1 we show that (assuming NIAS holds) this

boils down to the condition that

P2(c|ω1)− P2(c|ω2)− (P1(a|ω1)− P1(a|ω2)) ≥ 0.

This essentially implies that the DM be (weakly) more informed when choosing c in DP

2 than when choosing a in DP 1 - a condition which makes intuitive sense: the rewards to

information processing are higher in DP 2 than in DP 1. Notice that these conditions also

imply if the DM chooses to be uninformed in DP 2 - meaning that b is never chosen and

P2(c|ω1) = P2(c|ω2), then b also cannot be chosen in DP 1.

Together, NIAS and NIAC are necessary and suffi cient for the data in experiment 1 to

be consistent with the general model.

3.3 Experiment 2: Changing Incentives

Our second experiment is designed to examine how subjects change their attention as incen-

tives change. We do so using the simplest possible design: decision problems consist of two

actions and two equally likely states, with the reward for choosing the ‘correct’state varying

between problems. Table 4 shows the four DPs that were administered in experiment 2.

Payoffs were in probability points for a prize of $40, with subjects facing 50 repetitions of

each DP. Again, states 1 and 2 were represented by 49 and 51 red balls respectively.

Table 4: Experiment 2

Payoffs

DP U(a, 1) U(a, 2) U(b, 1) U(b, 2)

3 5 0 0 5

4 40 0 0 40

5 70 0 0 70

6 95 0 0 95

The primary aim of this experiment is to provide estimates of the cost function associated

with information acquisition. However, in order for this to be meaningful it must be the
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case that behavior is rationalizable with some underlying informational cost function. We

therefore begin by testing the NIAS and NIAC conditions which are necessary and suffi cient

for such a cost function to exist. In this setting these conditions take on a particularly simple

form. NIAS - which guarantees that subjects are using the information they have effi ciently

- requires that

Pi(a|1) ≥ Pi(a|2) for i ∈ {5, 6, 7, 8}.

This condition simply states that the subject must be more likely to choose the action

a in state 1 (when it pays off a positive amount) than in state 2 (when it does not). If and

only if this condition holds then a (resp. b) is the optimal choice of action given the posterior

probabilities over states when a (b) was chosen. See Caplin and Dean [2015] section E for

the derivation of the NIAS and NIAC conditions for experiments 2 and 3.

NIAC is the condition which ensures that behavior is consistent with some underlying cost

function. In this setting it is equivalent to requiring that subjects become no less accurate

as incentives increase - i.e.

P8(a|1) + P8(b|2)

≥ P7(a|1) + P7(b|2)

≥ P6(a|1) + P6(b|2)

≥ P5(a|1) + P5(b|2)

This condition guarantees that gross payoff cannot be increased by reallocation informa-

tion structures across decision problems.

Having established that some rationalizing cost function exists, we can consider what it

looks like. Of particular interest is whether behavior is consistent with Shannon costs. In

order to determine this, we can make use of the ILR condition above. Assuming that utility

is linear in probability points, this implies that

κ =
ln(γa5(1))− ln(γb5(1))

5

=
ln(γa6(1))− ln(γb6(1))

40

=
ln(γa7(1))− ln(γb7(1))

70

=
ln(γa8(1))− ln(γb8(1))

95
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Where γaj (1) is the posterior probability of state 1 in decision problem j following the

choice of action a (recall that these posteriors can be directly observed in the SDSC data).

Moreover, the symmetry of the Shannon model implies that γaj (1) = γbj(2).

Thus, while the general model implies only that the probability of making the correct

choice is non-decreasing in reward, the Shannon model implies a very specific rate at which

subjects must improve. Effectively, behavior in a single decision problem pins down the

model’s one free parameter, κ, which then dictates behavior in all other decision problems.

The class of models introduced in section 2.4 relax this constrain somewhat - allowing for

two parameters rather than one. We can use the data from experiment 2 to fit this class of

models in order to determine if provides an improvement over the Shannon assumption.

3.4 Experiment 3: Changing Priors

The third experiment studies the impact of changing prior probabilities. Again we use

the simplest possible setting with two states (47 and 53 red balls respectively)17 and two

acts. Again there are 4 decision problems, each of which is repeated 50 times. Because

this experiment made use of only two payoff levels, payment was made in cash, rather than

probability points. Table 5 describes the 4 decision problems with payoffs denominated in

US Dollars
Table 5: Experiment 3

Payoffs

DP µ(1) U(a, 1) U(a, 2) U(b, 1) U(b, 2)

7 0.50 10 0 0 10

8 0.60 10 0 0 10

9 0.75 10 0 0 10

10 0.85 10 0 0 10

Each DP has two acts which pay off $10 in their correct state. The only thing that

changes between the decision problems is the prior probability of state 1, which increases

from 0.5 in DP 7 to 0.85 in DP 10.

The general model has only a limited amount to say about behavior in experiment 3.

NIAC has no bite, as the general model puts no constraint on how information costs change

with changes in prior beliefs. However, NIAS must still hold - subjects must still use whatever

17We used a somewhat easier setting for this experiment (relative to experiment 2) in order to ensure that
most subjects collected some information in the baseline DP 7.
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information they have optimally. For this experiment the NIAS condition implies

Pi(a|1) ≥ 2µ(1)− 1

µ(1)
+

1− µ(1)

µ(1)
Pi(a|2)

Again this condition derives from the necessity that each action be the best option at

the distribution over states conditional on it being chosen.

A natural alternative model is one of base rate neglect (see for example Tversky and

Kahneman [1974]), in which subjects ignore changes in prior probabilities when assessing

alternatives. A DM who ignored the impact of changing priors on their posterior would be

in danger of violating NIAS as µ(1) increases.

In contrast, the posterior separable class of models puts a lot of structure on behavior

as priors change, as captured by the LIP condition. Figure 2 demonstrates the testable

implications of the LIP condition for experiment 3. First, one observes the posterior beliefs

associated with the choice of a and b in DP 7, when the µ(1) = 0.5 (panel a). Then, as

the prior probability of state 1 increases, there are only two possible responses. First, if the

prior remains inside the convex hull of the posteriors used at µ(1) = 0.5 the subject must

use precisely the same posteriors (panel b).18 Second, if the prior moves outside the convex

hull of the posteriors used at µ(1) = 0.5 the subject should learn nothing, and choose option

18Of course, for Bayes’rule to hold, it must also be the case that the unconditional probability of choosing
option a increases.
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a in all trials (panel c).

Figure 2: Locally Invariant Posteriors

Panel a: Posteriors used when

µ(1) = 0.5

Panel b: Same posteriors are

used if they remain feasible

Panel c: No learning takes place

if posteriors are infeasible

3.5 Experiment 4: Invariance Under Compression

Our final experiment is designed to test the property of IUC which is inherent in the Shannon

model.19 Consider the set up described in table 6. There are N equally likely states of the

world and two actions, a and b. Action a pays off $10 in states of the world {1, ...N
2
} and

19This experimental design was developed a part of a distinct project on information acquisition in global
games. See Dean et al. [2016].
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zero otherwise, while action b pays off $10 in states {N
1

+ 1, N} and zero otherwise.

Table 6: Experiment 4

Payoffs

States 1, ...N
2

N
2

+ 1, .., N

a 10 0

b 0 10

The predictions of the Shannon model in this environment can be readily determined

from the ILR condition, which shows that posterior beliefs following the choice of each act

depend only on the relative payoff the available acts in that state. This implies immediately

that behavior should be equivalent in all states between 1 and N
2
and in all states between

N
2

+ 1 and N . This is a manifestation of the IUC condition.

This illustrates an important behavioral feature of the Shannon model, which is that it

is symmetric. A permutation of prior beliefs and payoffs across states should lead to the

equivalent permutation of SDSC data, so behavior is essentially invariant to the labelling of

states. The model lacks any sense of ‘perceptual distance’, by which some states are harder

to distinguish that others. According to the Shannon model, subjects are no more likely to

make mistakes in states that are close to the threshold of N
2
than those that are far away.

Whether or not this is a reasonable assumption is likely to depend on the task at hand.

We therefore test this implication in two different decision making environments which differ

in the extent to which there is a natural perceptual distance between states. The first (the

‘Balls’treatment) makes use of the same interface as experiments 1-3: states are represented

by the number of red balls centered around 50. Subjects in this experiment faced four

different DPs, each of which was repeated 50 times. DPs varied in the number of possible

states - from 8 to 20 (so, for example, in the 8 state treatment there could be between 47

and 54 red balls, while in the 20 state treatment there could be between 41 and 60 red balls).

Figure 3: Alternative perceptual task
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The second environment (the ‘Letters’ treatment) makes use of a different perceptual

task. Subjects are shown a grid of letters, of the type displayed in figure 3. One of these

letters appears more often than the others. We refer to this as the ‘state’letter. The position

of the state letter in the alphabet determines the state: which act pays offdepends on whether

the state letter is before or after the letter /N . Again, subjects in this treatment faced 50

repetitions of 4 decision problems which varied the number of state letters in each grid

(non-state letters were always repeated 3 times) and the number of possible states (i.e. the

number of possible letters). Table 7 summarizes the various decision problems that go to

make up experiment 4. Subjects either faced DPs 11-14 (i.e. the balls treatment) or 15-17

(the letters treatment).

Table 7: Treatments for Experiment 4

DP Stimuli # States # Letter Repetitions

11 Balls 8 N/A

12 Balls 12 N/A

13 Balls 16 N/A

14 Balls 20 N/A

15 Letters 8 4

16 Letters 12 6

17 Letters 16 7

18 Letters 20 10

4 Implementation and Results

Subjects were recruited from the New York University and Columbia University student

populations.20 At the end of each session, one question was selected at random for payment,

the result of which was added to the show up fee of $10. Subjects usually took between 45

minutes and 1.5 hours to complete a session, depending on the experiment. Instructions are

included in the online appendix.

20Using the Center for Experimental Social Science subject pool at NYU and the Columbia Experimental
Laboratory in the Social Science subject pool at Columbia.
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4.1 Matching Theory to Data

The theoretical implications above are couched in terms of the population distribution of

SDSC - i.e. the true probability of a given subject choosing each possible alternative in each

state of the world. Of course this is not what we observe in our experiment for two reasons.

First, we are only able to make inferences based on estimates of these underlying parameters

from finite samples. Second, in order to generate these samples we will need to aggregate

over decision problems and/or individuals.

Taking the second problem first - we make use of two types of aggregation in the following

results. First, because we make each subject repeat the same decision problem numerous

times, we can estimate SDSC data at the subject level. Second, we can aggregate over

subjects who have faced the same decision problem which gives us more observations and so

more power. In principle, both of these might be problematic. In the former case, while each

repetition of the decision problem is the same if states are defined by number of red balls, the

actual configuration of red and blue balls vary from trial to trial in order to prevent learning.

It could be that some configurations are easier to understand than others (in extremis, all the

red balls could appear on the left of the screen while all the blue ones appear on the right).

Aggregating across individuals may also cause problems, because different individuals may

have different costs of attention.

For most of the tests that we perform this aggregation does not present a problem. For

example, in experiment 1 we look for violations of Monotonicity by studying whether the

probability of choosing b increases when c is introduced to the action set. Consider a DM

for whom monotonicity holds conditional on the diffi culty of the problem, as represented

by the configuration of dots on the screen. This means that, when sampling from different

configurations, the distribution of probabilities of b being selected when c was not available

should stochastically dominate that when c is available, and so Monotonicity should hold

in expectation. Similarly, aggregating across subjects for whom Monotonicity holds should

lead to monotonic data.

Two case in which aggregation may cause problems are (i) when we are estimating the

rate at which accuracy responds to incentives, for example when comparing the data to the

Shannon model in experiment 2, and (ii) when testing the LIP condition in experiment 3.

We discuss this issue in more depth in section 5 below.

Once we have done the aggregation, we are still faced with the fact that we only observe

estimates based on finite samples, and so we can only make probabilistic statements about
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whether a given condition holds for the underlying data generating process. Broadly speak-

ing, there are two possible types of test we can perform: we can either look for evidence that

an axiom is violated, or that it holds. Take again the example of Monotonicity, which states

that P{a,b}(b|2) ≥ P{a,b,c}(b|2). On the one hand, we could ask whether one can reject the hy-

pothesis that P{a,b}(b|2) < P{a,b,c}(b|2). On the other, one could try to reject the hypothesis

that P{a,b}(b|2) ≥ P{a,b,c}(b|2). In the former case, a rejection of the hypothesis would provide

convincing evidence that the axiom holds. In the second, it would provide convincing evi-

dence that the axiom is violated. The difference between the two tests is whether the axiom

is given the ‘benefit of the doubt’, in terms of data which is not statistically distinguishable

from P{a,b}(b|2) = P{a,b,c}(b|2). Note that the probability of observing such data should fall

as more data is collected, and so power increases. Typically we will use the former approach

for data aggregated across subjects, where we have enough observations to provide powerful

tests, and the latter for individual level data where we have less power.

Note that the null hypotheses above are defined in terms of inequalities. This is typically

the case for the tests we employ. When testing against a null hypothesis which encompasses

an entire region of the parameter space, there are two possible approaches. The Bayesian

approach is to assign some prior to the parameter space and then update it using the data.

The null is rejected if 95% of the posterior weight falls outside the null region. The frequentist

approach simply treats the null hypothesis as a single point hypothesis placed at the location

in the null region which is the most favorable to the null hypothesis. In this paper we will

use this approach - so, in the case of Monotonicity, we will use a two sided test against the

null of P{a,b}(b|2) = P{a,b,c}(b|2), regardless of whether we are taking as the null that the

axiom holds or that it is violated.

When aggregate data is used, standard errors are corrected for clustering at the subject

level.

A further potential issue is the fact that attention costs may vary over the course of the

experiment due to fatigue or learning effects. We discuss this issue in section 5.1.

4.2 Experiment 1: Testing for Responsive Attention

Table 8 summarizes the results of the Monotonicity tests from experiment 1. The first panel

reports the probability of choosing action b in state 1 with and without c available, and the

results of a statistical test to determine whether the latter is higher that the former. The

second panel repeats the exercise for P (b|2). The final column reports the fraction of subjects
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who show a significant violation of monotonicity. 28 subjects took part in this experiment,

evenly divided across the 4 treatments.

Table 8: Results of Experiment 121

P (b|1) P (b|2)

Treat N {a, b} {a, b, c} Prob {a, b} {a, b, c} Prob % Subjects

1 7 2.9 6.8 0.52 50.6 59.8 0.54 29

2 7 5.7 14.7 0.29 21.1 63.1 0.05 43

3 7 9.5 5.0 0.35 21.4 46.6 0.06 29

4 7 1.1 0.8 0.76 19.9 51.7 0.02 57

Total 28 4.8 6.6 0.52 28.3 55.6 <0.01 39

Aggregating across individuals and treatments (final row), we find a significant violation

of monotonicity in the direction predicted by models of rational inattention. The probabil-

ity of choosing b in state 2 increases from 28.3% to 55.6% following the introduction of c,

significant at the 1% level. The increase in the choice of b in state 1 is small and insignifi-

cant. At the individual level, 39% of subjects show a significant violation of monotonicity.

Disaggregating by treatment, we see that the point estimate of P (b|2) increases with the

introduction of c in all treatments, significantly so (at the 10% level) in treatments 2-4.

Table 9 reports the results of the NIAS tests for experiment 1 using aggregate data.22

The first column reports the mean value for the LHS of the tests described in table 3. Recall

that the NIAS condition requires each of these to be positive. The second column reports the

probability associated with a test of the hypothesis that this value is equal to zero. Five of the

seven tests provide strong evidence in favor of NIAS with point estimates significantly greater

than zero. The two remaining tests have estimates which are not significantly different from

21P values from a logit regression of the choice of option b on dummies representing whether or not c was
present and whether the state was 1 or 2. Standard errors clustered at the individual level.
22Estimate for the first row generated by constructing, for each choice and each individual

1(choose_a).1(state_1)
P (1)

(50− b1)

+
1(choose_a).1(state_2)

P (2)
(50− b2)

−100 + (b1 + b2)

where 1(choose_a) is a dummy which takes the value 1 if a is chosen, 1(state_i) is a dummy which takes
the value 1 if the state is i and P (i) is the empirical frequencey of state i. Averaging over these values
provides an estimate of the LHS of the first NIAS test described in table 3. P values were found using
bootstrapping with standard errors clustered at the individual level.
Data for other rows constructed using the same method.
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zero. In the comparison between a and c in DP 2 the point estimate is actually negative -

though not significantly so. This implies that people were choosing a when in fact it would

have provided (marginally) higher expected utility to choose c. One possible explanation for

this is a form of ‘certainty bias’for probability points: subjects may have liked the fact that

a provides a ‘sure thing’of 50 points, while c is ‘risky’

Table 9: NIAS Tests for Experiment 1

Aggregate Data

Test Est. P

NIAS DP 1 0.30 0.41

NIAS DP 2 a vs b 5.46 0.00

NIAS DP 2 a vs c -0.02 0.31

NIAS DP 2 b vs a 1.07 0.06

NIAS DP 2 b vs c 25.57 0.00

NIAS DP 2 c vs a 0.47 0.00

NIAS DP 2 c vs b 30.66 0.00

The NIAC condition requires that (P2(c|ω1)−P2(c|ω2))−(P1(a|ω1)− P1(a|ω2)) is greater

than zero. In the aggregate data the expected value of this expression is 0.234, significantly

different from 0 at the 5% level.23

At the individual level we observe only a small number of significant violations of NIAS

or NIAC. Of the 28 tests of NIAS in DP 1 we find 3 violations. In DP 2 of the 168 tests we

find 6 violations. For NIAC, we find 2 significant violations in 28 tests.

4.3 Experiment 2: Changing Incentives

We next report the results from experiment 2 in which we examine subjects’responses as

we change incentives. 52 subjects took part in this experiment.

We begin by testing the NIAS and NIAC conditions which are necessary and suffi cient

for the general model. Table 10 reports the results of the NIAS test - which requires that

the probability of choosing a in state 1 must be higher than in state 2 - using aggregate

data. It shows the probability of choosing a in each state for each decision problem, and

the probability of failing to reject the null that NIAS is violated. The aggregate data firmly

23Point estimates and standard errors calculated as in the NIAS tests above.
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supports the NIAS condition.

Table 10: NIAS Test from Experiment 224

DP Pj(a|1) Pj(a|2) Prob

3 0.74 0.40 0.00

4 0.76 0.34 0.00

5 0.78 0.33 0.00

6 0.78 0.28 0.00

Figure 4 shows the probability of choosing the ‘correct’act in each DP, averaging across

all subjects, which allows us to test the NIAC condition which states that this probability

should be non-decreasing in the reward level. The point estimates obey this pattern, with

accuracy increasing from 67% at the 5 probability point level to 75% at the 95 probability

point level. Most of the differences between DPs are significant at the 10% level.25

24Results of a logistic regression of choice of action a on a dummy for state 1. P value reported is that
associated with the state 1 dummy. Standard errors clustered at the subject level.
25Estimates and standard errors produced using a logit regression of correct choice on treatement, with

standard errors clustered at the individual level. The success rate at the 5 probabilty point level is signifi-
cantly different from that of 95 prob. point level at <0.1%, and different from the 40 and 70 levels at 10%.
The 40 probability point level is significantly different from the 95 level at 10%. The 70 probability point
level is not significantly different from either the 40 or the 95 level.
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Figure 4: Probability of Correct Response by Decision Problem

Table 11 reports the individual level data, and in particular the fraction of subjects who

exhibit significant violations of the NIAS condition, the NIAC condition, both or neither.

81% of subjects show no significant violations of either condition.26

26We checked the NIAC condition and the NIAS conditions separately for each individual. The NIAS
condition was tested by simply estimating a robust OLS model regressing probability of choice of action a
on state. If the coeffi cient was significantly negative that is considered a significant violation of NIAS.
NIAC was checked by estimating a GLM regression. In this model a dummy for correct response was

regressed against dummies for the three higher incentive levels. We then preformed an F-test of the joint
restrictions that (i) the dummy on to 40 probability point level was greater than or equal to 0, (ii) that the
dummy on the 70 point level was greater than or equal to that on the 40 point level and (iii) that the dummy
on the 95 level was greater than equal to that on the 70% level. Subjects were categorized as violating NIAC
if these restrictions were jointly rejected.
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Table 11: Individual Level Data from Experiment 2

Violate %

NIAS Only 2

NIAC Only 17

Both 0

Neither 81

Table 11 implies that most of our subjects do not have significant violations of the NIAS

and NIAC conditions and therefore act as if they maximize relative to some underlying cost

function. Figure 5 gives some idea of the heterogeneity of those costs across subjects. It

graphs the probability of choosing the correct action at the 5 point level vs the 95 point

level for each subject. The fact that most points fall above the 45 degree line is the defining

feature of rational inattention. However, within this constraint there is still a great deal

of variation. Our data set includes ‘high fixed cost, high marginal cost’ individuals who

gather little information regardless of reward: their accuracy is near 50% for the low and

high reward levels. It includes ‘low fixed cost’subjects who have accuracy close to 100%,

even in the low reward decision problem. Finally there are ‘high fixed cost, low marginal

cost’subjects, who actively adjust their accuracy as a function of reward.

Figure 5: Individual Accuracy 5 Point vs 95

Point Reward
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We next examine the extent to which subjects behave as if their costs are in line with

the Shannon model. Figure 6 shows the estimated costs κ from each decision problem and

in each state using aggregate data. The Shannon model would predict that these should

be equal. As we can see this is not the case: estimated costs are increasing in reward level

- the estimated costs are significantly different at the 0.01% level between the 5 and 95

point reward levels. The fact that estimated costs are increasing implies that subjects are

not increasing their accuracy fast enough in response to changing incentives relative to the

predictions of the Shannon model.27

Figure 6: Estimated Costs

We next examine whether the class of cost functions introduced in section 2.4 does a

better job of fitting the data. Figure 7 shows actual vs predicted accuracy at each reward

level for the Shannon model and the model defined by the posterior separable cost function

T{ρ,κ}.28 Since the Shannon model is nested within the class of T{ρ,κ} functions, this broader

27Cost estimates and standard errors based on an OLS regression of response on treatment and state
dummies, which were then converted into cost estimates using the method discussed in section 3.3. Standard
errors are clustered at the individual level.
28Models are fitted to the data by maximum likelihood. The error bounds were found through bootstrap

resampling of participants and reestimation of the parameters of the models. The error bars on the Shannon
model are very small for the low incentive level, because the model essentially pins down the intercept while
leaving the slope free. Therefore, a wide range of prections for the incentive level ninety-five will come from
a set of parameters which only produce a very narrow range of predictions at incentive level five. The data
for the higher incentive levels are then very precisely pinning down the predictions at low incentive levels
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class must weakly provided a better fit of the data. However, criteria that punish models

for having additional parameters still suggest rejecting Shannon in favor of the broader

parametrized class. For example the Akaike Information Criterion (AIC) is lower for the

T{ρ,κ} model than for the Shannon model.29

Figure 7

At the individual level we also see significant violations of the Shannon model. Figure

8 shows a scatter plot of the predicted vs actual accuracy for each subject in the 70 point

DP, where the prediction is made using the Shannon model and the accuracy displayed at

the 40 point level.30 The scatter plot shows more subjects below the 45 degree line (i.e.

are less accurate than predicted) than above (more accurate than predicted).31 For each

even if the low incentive level data does not match those predictions well.
29The AIC is 12750.67 for the Shannon model and 12424.41 for the T{ρ,κ} model.
30We use these two reward levels to illustrate our findings because the predictions derived from more

extreme comparisons typically cluster at the extremes, making the associated graph hard to interpret.
31For the analysis described in this paragraph we drop observations in which the point estimate for accuracy
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subject and pair of reward levels we can test for significant violations of the Shannon model

which indicate ‘too slow’adjustment relative to the Shannon model (i.e. the accuracy at

the higher reward is lower than it should be given the accuracy at the lower reward level),

and for violations which indicate ‘too fast’adjustment (accuracy at the higher reward level

is higher than it should be).32 Of the 221 possible comparisons, we find 66 violations of the

‘too slow’variety and 8 of the ‘too fast’variety. 21 subjects exhibit ‘too slow’violations only,

4 exhibit ‘too fast’violations’only, 2 have examples of both and 21 examples of neither.

Figure 8: Predicted vs actual accuracy in the 70% payoff

treatment

at the lower reward level is below 50%, as this does not allow us to recover the cost parameter of the Shannon
model and so make predictions for the higher cost level.
32For each person and each incentive level pair we regress correctness on incentive level and a dummy for the

higher incentive level with no constant using a logit regression. Note that a logit regression of correctness on
incentive level with no constant is equivalent to fitting a Shannon model in this case. Significant coeffi cients
on the high incentive dummy mean significant violations of Shannon. Positive coeffi cients mean that accuracy
is responding too fast while negative coeffi cients mean it is responding too slow.
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It could be that the violations of Shannon we observe are driven by those subjects that

do not satisfy the conditions of the general model - i.e. violate NIAS or NIAC. In order to

explore this possibility we repeat our analysis dropping such subjects and report the results

in Appendix A2. We still find widespread and systematic violations of the Shannon model

when focusing only on subjects whose behavior is rationalizable using some cost function.

4.4 Experiment 3: Changing Priors

We first examine the extent to which the 54 subjects in experiment 3 obeyed NIAS. Table 12

shows the aggregate probability of choosing act a in state 2, the resulting constraint on the

probability of choosing a in state 1, and the related probability in the data. The final column

shows the probability of failing to reject the null hypothesis that NIAS is violated in the

aggregate data. Broadly speaking, NIAS holds at the aggregate level: the point estimates for

P (a|1) are at or above the constraint for all decision problems, significantly so for decision

problems 7-9.
Table 12: NIAS Test33

DP Pj(a|2) Constraint on Pj(a|1) Pj(a|1) Prob

7 0.29 0.29 0.77 0.000

8 0.38 0.39 0.88 0.000

9 0.40 0.80 0.90 0.045

10 0.51 0.91 0.91 0.538

This pattern is repeated at the individual level, where we see only a small number of

subjects exhibiting significant violations of NIAS, as reported in table 13. Thus, we see little

evidence of base rate neglect in this data.

Table 13: Individual Level NIAS violations34

Decision problem 7 8 9 10

Prior 0.5 0.6 0.75 0.85

% Significant Violations 0 2 2 11

We next study the degree to which our data supports the predictions of the posterior

separable model in the form of the LIP condition. In order to do so, we first divide subjects

33Tests based on an OLS regression of choice of action on state for each treatment to obtain estimates of
Pj(a|2) and Pj(a|1). Standard errors clustered at the individual level. These estimates then used in a test
of the linear restriction implied by the NIAS model.
34Tests based on the same method reported for the aggregate data in table 13.
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based on the estimated posteriors in DP 7, in which both states are equally likely. The

important distinction is where the posterior associated with the choice of action a falls

relative to the priors for DPs 8-10. Table 14 shows this categorization.

Table 14: Categorization Based

on Posteriors from DP 7

Posterior Range N %

[0.5,0.6) 14 25

[0.6,0.75) 12 22

[0.75,0.85) 12 22

[0.85,1] 16 29

The first prediction of the posterior separable model is that, in DP i with prior µi(1),

subjects who use a posterior γa7(1) < µi(1) should exclusively choose action a, while those

with γa7(1) > µi(1) should choose both a and b, where γa7 refers to the posteriors revealed in

DP 7 given the choice of a. Table 15 tests this ‘no learning’prediction. The top panel divides

subjects into those who have a threshold (i.e. posterior belief from DP 7) above µi(1), and

those for whose threshold is below µi(1) for µ8(1) = 0.6, µ9 = 0.75 and µ10 = 0.85. For

each of these decision problems, and each of these groups, it then reports the fraction of

subjects who exclusively choose a. The second panel repeats the exercise but allows for

some mistakes on the part of the subject by replacing the condition ‘never choose a’with

the condition ‘choose a less than 3 times’(out of 50) in the DP.

Table 15: Testing the ‘no learning’prediction

µ(1)

DP8 DP9 DP10

0.6 0.75 0.85

Never choose b γa7(1) < µi(1) 35% 27% 29%

γa7(1) ≥ µi(1) 0% 7% 13%

Choose b< 3 γa7(1) < µi(1) 50% 27% 37%

γa7(1) ≥ µi(1) 3% 7% 25%

Table 15 shows that, while it does not perfectly match our data, the ‘no learning’predic-

tion does produce the correct comparative statics. In each DP, around 30% of the subject

who should exclusively choose a do so, higher than the equivalent fraction for those who

should be choosing both a and b. These differences are significant at the 5% level for DP 8
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and 9, but not for DP 10.

The second part of the LIP condition states that, in each DP, subjects who are still

actively gathering information35 should use the same posteriors as they did in DP 7. Figure

9 tests this hypothesis. Panel a focusses on DP 8. It reports data exclusively on subjects

who should be choosing both a and b in this DP according to the posterior separable model

(i.e. those for whom γa7 > 0.6). It shows the estimated posteriors associated with the choice

of action a and b in DP 7 and DP 8 aggregating across all such subjects. The LIP prediction

is that these posteriors should be the same. Panels b and c repeat this analysis for DPs

9 and 10. Figure 9 shows that LIP holds relatively well when comparing the 0.5 and 0.6

posteriors: neither the posterior associated with the choice of a nor the one associated with

b is significantly different across the two decision problems. However, LIP starts to break

down as the prior becomes more skewed: The probability of state 2 given the choice of b (i.e.

γbj(2)) is significantly lower when the prior is 0.75 or 0.85 than when it is 0.5 (P<0.01)).36

35 i.e. those for whom their posterior beliefs from DP 7 fall above the prior in that DP.
36Tests based on OLS regressions with standard errors clustered at the individual level.
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Figure 9a: Subjects with threshold

above 0.6

Figure 9b: Subjects with thresholds

above 0.75

Figure 9c: Subjects with threshold

above 0.85

4.5 Experiment 4: Symmetry

23 subjects took part in the ‘Balls’treatment and 24 in the ‘Letters’treatment for experiment

4. The results are summarized in figures 10 and 11, which show the probability of choosing
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the correct action as a function of the state for each DP and each treatment.

Figure 10: Balls Treatment

Figure 11: Letters Treatment

These figures show clear and systematic violations of symmetry in the ‘Balls’treatment

but not in the ‘Letters’treatment. Figure 10 shows that, for DPs 11-14 subjects were more

likely to make mistakes in states near the threshold of 50. This observation is confirmed by

regression analysis, which finds a significant and positive correlation between distance from

threshold and probability correct for each DP. No such relationship is observed in the letters
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treatment.37 While there are variations in the probability correct across states,38 these are

not significantly correlated with distance from the threshold of N for any decision problem

or in aggregate.

5 Discussion

Our overall conclusions from this set of experiments are (1) that experimental subjects clearly

adapt their attention strategy in response to incentives; (2) that they do so broadly in line

with the general model of rational inattention, at least in the aggregate data and in the simple

environments we consider; (3) that the Shannon model has some significant diffi culties in

explaining our data, both in terms of the relationship it predicts between changing rewards

and information gathering, and its unrealistic symmetry properties; and (4) the broader

class of PS models improves on Shannon by dropping the symmetry property and allowing

for a better fit of the relationship between incentives and information gathering; (5) the

LIP condition which characterizes such models is violated but also appears to have some

empirical bite.

5.1 Aggregation and Order Effects

In this section we discuss some of the issues which could effect these conclusions. In par-

ticular, could aggregation and order effects be responsible for some of the results we find,

and so be the reason we have rejected some models? As discussed in section 4.1, there are

two forms of aggregation which might be problematic: across individuals with different cost

functions, and across decision problems with different degrees of diffi culty. Of the two, we

expect the former to be the primary source of variability. Given the large number of balls

on the display, the law of large numbers means that we do not expect significant variation in

costs across repetitions. For example, diffi culty may be related to the degree to which balls

37Results from an OLS regression. A distance measure was constructed measuring the absolute distance
between the state and the threshold. In the Balls treatment this is equal to the difference between the
number of balls on the screen and 50. For the letters treatment this is the number of letters between the
state letter and N. Choice is then regressed on distance, which action is correct, and DP separately for balls
and letters treatments, aggregating across decision problem. Standard errors clustered at the subject level.
The estimated coeffi cient on distance is 0.032 (P<0.001) in the balls treatment and 0.001 (P=0.694) in the
letters treatment.
38The main difference in accuracy across states is due to subjects on average being more accurate in states

below N than above. The reason for this is that subjects who always gave the same response overwhelmingly
chose action a, rather than b.
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clustering by color, the variance of which will be low when the number of balls is large.

Of the tests that we report, those that are potentially affected by aggregation issues are

the test of the ILR condition in experiment 2 and the test of LIP in experiment 3. In both

cases we report individual level as well as aggregate results. In the former case it is true that

variability in information costs could lead to violations of the predictions of the Shannon

model in the direction we observe. Data generated by aggregating across different cost levels

in each decision problem would respond more slowly to incentives than the Shannon model

would predict under the assumption of no cost variation. However, if such variations cause

the model to fail at the individual level in an experimental situation where we believe costs

to be relatively stable, they are likely to cause trouble for other applications as well. It is

hard to think of an application of the model which does not require some aggregation of

data.

In the case of the LIP condition, variability in costs would also bias the test towards a

rejection of the ‘no learning’condition: for example a subject who faced a particularly low

cost realization for (say) µ(1) = 0.6 might seek information and choose action b, even if they

would choose to be uninformed at average information costs. Thus the success rate we find

should be treated as a lower bound.

A further question is whether we find evidence of order effects in our data - i.e. evidence

that subject’s performance changes through the experiment due to, for example, learning

effects or fatigue. Our design randomizes the order in which subjects face decision problems,

which has two advantages. First, we can estimate the impact of order on performance, and

second, such effects should wash out in the aggregate data. Order effects are of most interest

in experiments 2 and 3, in which they could have a substantial effect on our conclusions.

Appendix A3 reports the result of regressions of accuracy (i.e. the probability of picking

the rewarding action) on order (i.e. in which block the question occurred between 1 and 4)

while controlling for the type of question and clustering standard errors at the subject level.

We find significant order effects in experiment 2 but not in experiment 3. In experiment 2

subjects were more accurate in the first block. No other differences were significant. These

order effects could lead to some of the individual level violations of the NIAC and ILR

conditions we observe. To the extent that there are undetected order effects in experiment

3, they may explain some of the failures of the ‘no learning’prediction discussed in Table 16

However, they should not lead to the significant violations of LIP we see in figure 9.

We note that we do not necessarily see the potential presence of order effects as problem

with our experimental design. Rather, it tells us when and how models of rational inattention
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can be applied. If people exhibit significant fluctuations in the cost of effort due to, for

example, fatigue, this means that the general model may work well in making aggregate

predictions but be less effective in making predictions at an individual level, unless these

fluctuations can be controlled for.

6 Related Literature

Many papers have established the importance of attention limits in economically interesting

contexts, including consumer choice,39 financial markets,40 and voting behavior.41 There

have, however, been far fewer papers that have attempted to test models of inattention. In the

experimental literature, Caplin et al. [2011] and Geng [2016] test models of sequential search

in the ‘satisficing’tradition of Simon [1955]. While these papers find evidence of satisficing

in the context of choice amongst a large numbers of easily understood alternatives, such

models are clearly not suitable for understanding behavior when faced with a small number

of diffi cult to understand alternatives, as we examine in this paper. Indeed, as satisficing

behavior can be optimal given a particular information cost function (see Caplin et al. [2011]),

the satisficing model can be seen as a special case of the models studied here.

Gabaix et al. [2006] test a dynamic model of information acquisition in which agents are

partially myopic, and so not fully rational, which they label a model of ‘directed cognition’.

Unlike out paper, search costs are imposed explicitly either through financial costs or time

limits. Instead, our aim is to learn about the intrinsic costs to information acquisition that

decision makers face. Gabaix et al. [2006] also make use of a very different data set, looking at

the sequence in which data is collected using Mouselab,42 rather than the resulting pattern of

stochastic choice. The optimal sequence of data acquisition in their set up cannot be readily

determined, meaning that it is hard to tell whether their directed cognition model describes

the data better than a fully rational alternative.43 More recent work (Taubinsky [2013],

Goecke et al. [2013], Khaw et al. [2016]) has also focussed on the dynamics of information

39Chetty et al. [2009], Hossain and Morgan [2006], Allcott and Taubinsky. [2015], Lacetera et al. [2012],
Pope [2009], Santos et al. [2012].
40DellaVigna and Pollet [2007], Huberman [2015], Malmendier and Shanthikumar [2007], Bernard and

Thomas [1989], Hirshleifer et al. [2009].
41Shue and Luttmer [2009], Ho and Imai [2008].
42An earlier literature used tools such as Mouselab and eye tracking to document what information in-

dividuals gather during the process of choice - see Payne et al. [1993], and Brocas et al. [2014] for a more
recent application of these methods to choice in strategic settings. These papers have not genrally used the
data to compare behavior to rational benchmarks.
43Though see Sanjurjo [2017].
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acquisition.

A third set of papers (Pinkovskiy [2009] and Cheremukhin et al. [2015]), estimate the

Shannon model on experimental data sets in which people make binary choices between

gambles. These papers make use of standard stochastic choice data - modeling inconsistent

choices as mistakes caused by lack of information - and not the SDSC data we introduce in

this paper. While they typically find the Shannon model does well relative to other, non-

rational models of stochasticity, they do not focus on the specific features that characterize

this model within the general rational inattention class, such as ILR and LIP. For example,

Cheremukhin et al. [2015] reports that accuracy increases with incentives - effectively a test

of NIAC, which is a property of all models of rational inattention. There is no test of the

specific properties which characterize the Shannon model.

In contrast to the relatively small amount of work in economics, there is a huge literature

in psychology which has used SDSC data in order to understand the processes underlying

perception and choice. Many of these studies are used to test the implications of the sequen-

tial sampling class of models, in which agents gain information over time, allowing them

to arrive at their final decision.44 Other work has focussed on testing the SDT paradigm

introduced in section 2.2.1. See Yu [2014] and Ratcliff et al. [2016] for recent reviews, and

Krajbich et al. [2011] for a discussion of the application of sequential sampling models to

economic choice. Some of these studies are similar the design of experiments 2 and 3 in this

paper - varying the reward level and prior beliefs in a choice between two uncertain alterna-

tives. Typically these studies focus on subject’s ability to successfully complete perceptual

tasks.45 and have design elements that make them unsuitable for our purpose - for example

a lack of explicit incentives (e.g. van Ravenzwaaij et al. [2012] study the effect of changing

priors in an unincentivized task) or a focus on a specific clinical population (for example

Reddy et al. [2015] look at the response to incentives in schizophrenic subjects). To our

knowledge, none of these studies perform the specific tests of the various classes of rational

inattention model that we describe here. Neither does the literature include an equivalent

of our experiments 1 and 4.

44See for example Ratcliff and McKoon [2008] for an introduction to this class of models.
45Probably most popular are dot motion tasks (Britten et al. [1992]), in which participants are shown

screens with numerous moving dots and are asked to determine the overall direction of motion of the group.
Ratcliff et al. [2016] reviews several studies of this type. Another common perceptual task is the lexical
differentiation task (e.g. Zandt et al. [2000]) in which participants are asked to differentiate between letters
or words based on some given rule. The last common experimental approach is static geometric estimate
(e.g. Ratcliff and Smith [2004]). In these studies, participants are asked to categorize static images based on
some visual characteristic such as distance, length, or orientation. It is this static geometric discrimination
task that the experiments in this study most closely resembles, although to our knowledge no psychology
study has used our precise perceptual task.
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7 Appendix

7.1 Appendix A1: NIAS and NIAC for Experiment 1

NIAS demands that, for each action a ∈ A chosen with positive probability∑
ω∈Ω

µ(ω)P (a|ω) (u(a, ω)− u(a′, ω)) ≥ 0

for every other available alternative a′ ∈ A.

For notational convenience, we will use P to denote the SDSC data arising from the

decision problem {a.b} and P̂ for that arising from {a, b, c}.

Taking the former DP first, the comparison of a to b requires

P (a|ω1)(50− b1) + P (a|ω2)(50− b2) ≥ 0

while the comparison of b to a requires

(1− P (a|ω1)) (b1 − 50) + (1− P (a|ω2)) (b2 − 50)) ≥ 0

or

P (a|ω1)(50− b1) + P (a|ω2)(50− b2) ≥ 100− (b1 + b2)

As, in all our treatments, b1 + b2 < 100 it is only the latter condition that binds.

In the DP in which the DM chooses from {a, b, c} the comparison of a to b again requires

P̂ (a|ω1)(50− b1) + P̂ (a|ω2)(50− b2) ≥ 0

while the comparison of a to c demands

P̂ (a|ω1) (50− 100) + P̂ (a|ω2) (50) ≥ 0⇒
50
(
P̂ (a|ω2)− P̂ (a|ω1)

)
≥ 0

⇒ P̂ (a|ω2) ≥ P̂ (a|ω1)
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The comparison of b to a gives

P̂ (b|ω1)(b1 − 50) + P̂ (b|ω2)(b2 − 50) ≥ 0

And that of b to c

P̂ (b|ω1)(b1 − 100) + P̂ (b|ω2)b2 ≥ 0

The comparison of c to a gives

P̂ (c|ω1) (100− 50) + P̂ (c|ω2) (−50) ≥ 0⇒
50
(
P̂ (c|ω1)− P̂ (c|ω2)

)
≥ 0

⇒ P̂ (c|ω1) ≥ P̂ (c|ω2)

While the comparison of c to b gives

P̂ (c|ω1)(100− b1)− P̂ (c|ω2)b2 ≥ 0

Note that not all of these constraints will hold simultaneously.

NIAC requires that the total surplus generated from the observed matching of informa-

tion structures to decision problems is greater than that generated by switching revealed

information structures across decision problems

G(µ, {a, b} , π) +G(µ, {a, b, c} , π̂) (2)

≥ G(µ, {a, b} , π̂) +G(µ, {a, b, c} , π)

where π is the revealed posterior from data P generated from choice set {a, b} and π̂
is the revealed information structure from data set P̂ generated from choice set {a, b, c}.
See Caplin and Dean [2015] for a formal definition of the revealed information structure,

but essentially it assumes that the DM used an information structure which consists of the

posteriors described in equation 1 for each chosen act, with the probability of receiving that

posterior given by the (unconditional) probability of choosing the associated act.

Assuming NIAS holds, we can calculate G(µ, {a, b} , π) directly from the data: these are
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just the gross utilities derived from SDSC observed in each DP, so

G(µ, {a, b} , π) = (P (a ∩ ω1) + P (a ∩ ω2)) 50 + P (b ∩ ω1)b1 + P (b ∩ ω2)b2

= 0.5 [(P (a|ω1) + P (a|ω2)) 50 + P (b|ω1)b1 + P (b|ω2)b2]

where we have used the fact that µ(1) = µ(2) = 0.5. Similarly for G(µ, {a, b, c} , π̂) we

have

G(µ, {a, b, c} , π̂) = 0.5
[(
P̂ (a|ω1) + P̂ (a|ω2)

)
50 + P̂ (b|ω1)b1 + P̂ (b|ω2)b2 + P̂ (c|ω1)100

]
Recall that G(µ, {a, b} , π̂) is the hypothetical utility generated from using information

structure π̂ in DP {a, b}. This means that we have to calculate the optimal action to take
from the posteriors γ̂a, γ̂b and γ̂c associated with acts a b and c in the DP in which π̂ is

observed. Note that, assuming NIAS hold, it must be the case that a is still optimal from

γ̂a and b is still optimal from γ̂b in the new problem. The question is therefore only whether

the DM should choose a or b from γ̂c. Note, however, that NIAS implies that

γ̂c(ω1)100 ≥ γ̂c(ω1)50 + (1− γ̂c(ω1))50

⇒ γ̂c(ω1) ≥ 1

2

which in turn implies that it is optimal to choose a rather than b from this posterior. We

therefore have

G(µ, {a, b} , π̂) =
(
P̂ (a|ω1) + P̂ (a|ω2) + P̂ (c|ω1) + P̂ (c|ω2)

)
50

+P̂ (b|ω1)b1 + P̂ (b|ω2)b2

Similarly, in order to calculate G(µ, {a, b, c} , π) we need to figure out the optimal choice

of action from γa and γb associated with the choice of a and b in {a, b, c}. Again from NIAS
it is obvious that it must be the case that γb(ω1) ≤ 1

2
, and so it cannot be optimal to choose

c from this posterior. NIAS also implies that it must be better to choose b rather than a

from this posterior. Further, note that by Bayes rule we have

P (a)γa(ω1) + (1− P (a))γb(ω1) =
1

2

Thus, as γb(ω1) ≤ 1
2
it must be the case that γa(ω1) ≥ 1

2
, meaning that c is weakly
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optimal from this posterior. This means that

G(µ, {a, b, c} , π) = P (b|ω1)b1 + P (b|ω2)b2 + P (a|ω1)100

Plugging these into inequality 2 and cancelling gives

(P (a|ω1) + P (a|ω2)) 50 + P̂ (c|ω1)100

≥
(
P̂ (c|ω1) + P̂ (c|ω2)

)
50 + P (a|ω1)100

or

P̂ (c|ω1)− P̂ (c|ω2) ≥ P (a|ω1)− P (a|ω2)

This expression has a natural interpretation when one notes that NIAS implies that

P̂ (c|ω1) ≥ P̂ (c|ω2) and P (a|ω1) ≥ P (a|ω2): it implies that the DM has to be more informed

when choosing c in DP {a, b, c} than when choosing a in DP (a, b}. In particular, if the DM
chooses to gather no information in the former problem, meaning that P̂ (c|ω1) = P̂ (c|ω2),

it must also be the case that P (a|ω1) = P (a|ω2), and so the DM is uninformed in the first

problem. NIAS in turn implies that in such cases a must be chosen exclusively in {a, b}.

7.2 Appendix A2: Shannon without Subjects who Violate NIAS

or NIAC

In this appendix we rerun the analysis testing the Shannon model using the data from

experiment 2 while excluding those subjects who exhibit significant violations on NIAS and

NIAC. We will refer to the remainder as ‘consistent’subjects.

Figure A2.1 shows estimated costs κ using aggregate data , replicating the analysis of

figure 6. Again, we see that costs are significantly higher at the 95 point level than at the 5

point level, indicating that adjustment is again too slow relative to the Shannon model
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Figure A2.1: Estimated Costs - Consistent Subjects Only

Figure A2.2 replicates the analysis of figure 7 using only consistent subjects. Again we

see that the models from the broader T{ρ,κ} class outperform the Shannon model, with an
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AIC of 9852 vs 10123 for the Shannon model

Figure A2.2: Consistent subjects only

Figure A2.3 replicates the individual level analysis of figure 8. As with the equivalent

analysis in section 4.3, we drop observations in which accuracy at the lower reward level is

below 50%. Of the 178 possible comparisons, we find 42 violations of the ‘too slow’variety

and 5 of the ‘too fast’variety. 15 of subjects exhibit ‘too slow’violations only, 3 exhibit ‘too
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fast violations’only and 21 have examples of neither.

Figure A2.3: Predicted vs actual accuracy in the 70%

payoff treatment

7.3 Appendix A3: Order Effects

Tables A3.1 and A3.2 report the result of regressions of accuracy (i.e. the probability of

picking the rewarding action) on order (i.e. in which block the question occurred, between 1

and 4) controlling for the type of question and clustering standard errors at the subject level

for experiments 2 and 3. In both cases the excluded category is block 1 - i.e. the first set

of questions answered. The lower and upper CI refer to the upper and lower bounds to the

95% confidence interval, while Prob refers to the probability of rejecting the null hypothesis
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that the coeffi cient is equal to zero.

Table A3.1: Order Effects - Experiment 2

Block Coeffi cient Lower CI Upper CI Prob

2 -0.05 -0.09 -0.00 0.04

3 -0.07 -0.11 -0.03 0.00

4 -0.06 -0.11 -0.02 0.03

Table A3.2: Order Effects - Experiment 3

Block Coeffi cient Lower CI Upper CI Prob

2 -0.01 -0.05 0.04 0.81

3 -0.02 -0.07 0.02 0.34

4 -0.02 -0.08 0.02 0.19
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